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ABSTRACT 

The Adomian decomposition method (ADM) is a semi-analytical method for 

solving ordinary and partial nonlinear differential equations. In this paper, we 

introduce the Adomian decomposition method on arbitrary time scales. Then, 

using the 𝛼 −levels of a fuzzy function, we introduce the ADM for a class of 

first order fuzzy dynamic equations on arbitrary time scales for existence of 

solutions. It is shown that the series solutions converge to the exact solution 

for the considered problem. The results are provided with suitable numerical 

examples that show the accuracy of the proposed method. 
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1. Introduction 

A cornerstone in the unification of continuous and discrete analysis is the theory of dynamic equations on time 

scales, pioneered by Stefan Hilger in his seminal 1988 work. This powerful framework provides a robust 

methodology for modeling phenomena that inherently blend continuous and discrete dynamics, finding profound 

applications across biology, physics, and engineering. By offering a unified formalism that seamlessly generalizes 

standard differential and difference equations, the time scales calculus has facilitated significant advances in the 

analysis of complex dynamic systems. Due to their significance in applications, extensive research has been 

conducted on dynamic equations on time scales within diverse fields, including control theory, economics, and so 

on [1, 6]. Some numerical methods for dynamic equations on time scales were explored in [5]. Building on this 

foundation, the development of fuzzy dynamic equations on time scales was pioneered by Fard and Bidgoli [3] to 

incorporate uncertainty into this framework, enabling the modeling of real-world systems with imprecise or vague 

data. This theory has been applied to investigating the uniqueness and existence of solutions to fuzzy dynamic 

equations on time scales, as exemplified in [2, 4, 8]. 

George Adomian established the Adomian decomposition method (ADM) in the 1980s. The ADM has received 

much attention in recent years in applied mathematics and in the field of infinite series solution. It is an effective 

method to solve many types of linear, nonlinear, ordinary, or partial differential equations and integral transforms 

(such as the Volterra and Fredholm integral transforms). 

In this paper, we introduce the Adomian decomposition method for a class of first order fuzzy dynamic equations 

on arbitrary time scales. More precisely, we apply the Adomian decomposition method for the following class of 

first order fuzzy dynamic equations  

 𝛿𝐻𝑦 = 𝑓(𝑦),  𝑡 ∈ (𝑡0, 𝑇], (1) 

 𝑦(𝑡0) = 𝑦0, (2) 

where 

𝑓 ∈ 𝐶([𝑡0, 𝑇] × 𝐹( 𝑅)), 𝑓: 𝐹( 𝑅) → 𝐹( 𝑅), 𝑡0, 𝑇 ∈ 𝑇, 𝑇 is an arbitrary time scale with forward jump operator and delta 

differentiation operator 𝜎 and 𝛥, respectively.  

Here 𝐹( 𝑅) denotes the set of all real fuzzy numbers, 0̃ denotes the zero fuzzy number and 𝛿𝐻 denotes the first 

type fuzzy delta derivative on 𝑇. 

The problem (1) was investigated in [7] on arbitrary time scales for existence of solutions. The authors used some 

recent fixed point theorems to prove existence of at least one solution and existence of multiple solutions. To the 

best of our knowledge, there is a gap in the references for investigations of numerical methods for fuzzy dynamic 

equations on time scales. Here, in this paper we try to fill out this gap introducing the Adomian decomposition 

method for a class of fuzzy dynamic equations on arbitrary time scales.. 

This paper is organized as follows. In the next section, we make an exposition of the Adomian decomposition 

method on time scales. In Section 3 we introduce the Adomian decomposition method for the problem (1), (2). In 

Section 4, we give a numerical example. A conclusion is made in Section 6. 

Throughout this work, we assume a good knowledge on time scale calculus and fuzzy time scale calculus. 

2. The Adomian Decomposition Method on Time Scales 

Suppose that 𝑇 is a time scale with forward jump operator and delta differentiation operator 𝜎 and 𝛥, 

respectively. For 𝑡, 𝑠 ∈ 𝑇, define the monomials  

 ℎ0(𝑡, 𝑠) = 1,  ℎ𝑘+1(𝑡, 𝑠) = ∫ ℎ(𝜏, 𝑠)𝛿𝜏.
𝑡

𝑠
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For our investigations in this section, we have a need of the following auxiliary result. 

Theorem 2.1 For every 𝑚, 𝑛 ∈ 𝐍0 we have  

 ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼) = ∑ (∑ ℎ𝑛

Λ𝑙,𝑚(𝛼, 𝛼)
Λ𝑙,𝑚∈𝑆𝑚

(𝑙) ) ℎ𝑙(𝑡, 𝛼)𝑚+𝑛
𝑙=𝑚  

for every 𝑡, 𝛼 ∈ 𝑻, where 𝑆𝑚
(𝑙)

 is the set consisting of all possible strings of length 𝑙, containing exactly 𝑚 times 𝜎 and 

𝑙 − 𝑚 times 𝛥.  

Proof. If 𝑚 = 0 or 𝑛 = 0 the assertion is evident. Suppose that 𝑚 ≠ 0 and 𝑛 ≠ 0. By the Taylor formula, we have  

 ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼) = ∑ (ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼))Δ𝑙∞
𝑙=0 |𝑡=𝛼ℎ𝑙(𝑡, 𝛼). 

By the Leibnitz rule, we have  

 (ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼))Δ𝑙
= ∑ (∑ ℎ𝑛

Λ𝑙,𝑘(𝑡, 𝛼)
Λ𝑙,𝑘∈𝑆𝑘

(𝑙) )𝑙
𝑘=0 ℎ𝑚

Δ𝑘
(𝑡, 𝛼). 

Let 𝑙 < 𝑚. Then  

 (ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼))Δ𝑙
= ∑ (∑ ℎ𝑛

Λ𝑙,𝑘(𝑡, 𝛼)
Λ𝑙,𝑘∈𝑆𝑘

(𝑙) )𝑙
𝑘=0 ℎ𝑚−𝑘(𝑡, 𝛼). 

From here, for 𝑙 < 𝑚, we obtain ℎ𝑚−𝑘(𝛼, 𝛼) = 0 and therefore  

 (ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼))Δ𝑙
|𝑡=𝛼 = 0. 

Let now, 𝑙 ≥ 𝑚. Then, using that ℎ0(𝑡, 𝛼) = 1, we get  

 

(ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼))Δ𝑙
|𝑡=𝛼 = ∑ (∑ ℎ𝑛

Λ𝑙,𝑘(𝑡, 𝛼)
Λ𝑙,𝑘∈𝑆𝑘

(𝑙) )𝑚−1
𝑘=0 ℎ𝑚−𝑘(𝑡, 𝛼)|𝑡=𝛼

+ ∑ ℎ𝑛

Λ𝑙,𝑚(𝑡, 𝛼)|𝑡=𝛼Λ𝑙,𝑚∈𝑆𝑚
(𝑙)                               

= ∑ ℎ𝑛

Λ𝑙,𝑚(𝛼, 𝛼).
Λ𝑙,𝑚∈𝑆𝑚

(𝑙)                                      

 

Hence, using the fact that 𝛬𝑙,𝑚 consists of 𝑚 times 𝜎 and 𝑙 − 𝑚 times 𝛥, and  

 

𝑓𝜎 = 𝑓 𝑜𝑟 𝑓𝜎 = 𝑓 + 𝜇𝑓Δ,

  𝑓𝜎𝜎 = 𝑓 𝑜𝑟 𝑓𝜎𝜎 = 𝑓 + 𝜇𝑓Δ + 𝜇𝜎(𝑓Δ + 𝜇𝑓Δ2
),

  

and so on, we obtain  

 

ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼) = ∑ (ℎ𝑛(𝑡, 𝛼)ℎ𝑚(𝑡, 𝛼))Δ𝑙
|𝑡=𝛼

∞
𝑙=𝑚 ℎ𝑙(𝑡, 𝛼)

= ∑ (∑ ℎ𝑛

Λ𝑙,𝑚(𝛼, 𝛼)
Λ𝑙,𝑚∈𝑆𝑚

(𝑙) )∞
𝑙=𝑚 ℎ𝑙(𝑡, 𝛼)  

= ∑ (∑ ℎ𝑛

Λ𝑙,𝑚(𝛼, 𝛼)
Λ𝑙,𝑚∈𝑆𝑚

(𝑙) )𝑚+𝑛
𝑙=𝑚 ℎ𝑙(𝑡, 𝛼),

 

which completes the proof.  

For 𝑠 ∈ T, 𝑙, 𝑚, 𝑛 ∈ N0, set  

 𝐴𝑙,𝑚,𝑛,𝑠 = ∑ ℎ𝑛

Λ𝑙,𝑚(𝑠, 𝑠)
Λ𝑙,𝑚∈𝑆𝑚

(𝑙)  
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and for any 𝑚, 𝑛 ∈ 𝑁0, applying Theorem 2.1, we have  

 ℎ𝑛(𝑡, 𝑠)ℎ𝑚(𝑡, 𝑠) = ∑ 𝐴𝑙,𝑚,𝑛,𝑠ℎ𝑙(𝑡, 𝑠).𝑚+𝑛
𝑙=𝑚  (3) 

For 𝑛 ∈ 𝑁0, 𝑡, 𝑠 ∈ 𝑇, define the polynomials  

 𝐻𝑛
1(𝑡, 𝑠) = (ℎ1(𝑡, 𝑠))𝑛 ,  𝑡, 𝑠 ∈ T. 

Note that  

 𝐻𝑛
1(𝑡, 𝑠)𝐻𝑚

1 (𝑡, 𝑠) = 𝐻𝑛+𝑚
1 (𝑡, 𝑠),  𝑡, 𝑠 ∈ T. 

Note also that  

 𝐻1
1(𝑡, 𝑠) = ℎ1(𝑡, 𝑠), (4) 

and by (3), we get  

 𝐻2
1(𝑡, 𝑠) = ℎ1(𝑡, 𝑠)ℎ1(𝑡, 𝑠) 

 = ∑ 𝐴𝑙,1,1,𝑠ℎ𝑙(𝑡, 𝑠)2
𝑙=1  

 = 𝐴1,1,1,𝑠ℎ1(𝑡, 𝑠) + 𝐴2,1,1,𝑠ℎ2(𝑡, 𝑠) 

 = 𝐴1,1,1,𝑠𝐻1
1(𝑡, 𝑠) + 𝐴2,1,1,𝑠ℎ2(𝑡, 𝑠), 

whereupon  

 ℎ2(𝑡, 𝑠) = −
𝐴1,1,1,𝑠

𝐴2,1,1,𝑠
𝐻1

1(𝑡, 𝑠) +
1

𝐴2,1,1,𝑠
𝐻2

1(𝑡, 𝑠), 

and so on. Below we denote by 𝐵𝑖
𝑗
, 𝑖, 𝑗 ∈ 𝑁, the constants for which  

 𝐻𝑛
1(𝑡, 𝑠) = 𝐵1

𝑛ℎ1(𝑡, 𝑠) + 𝐵2
𝑛ℎ2(𝑡, 𝑠) + ⋯ + 𝐵𝑛

𝑛ℎ𝑛(𝑡, 𝑠),  𝑡, 𝑠 ∈ T. (5) 

Example 2.1 Let 𝛼 ∈ R. Then  

 𝑒𝛼(𝑡, 𝑠) = 1 + 𝛼ℎ1(𝑡, 𝑠) + 𝛼2ℎ2(𝑡, 𝑠) + ⋯ 

= 1 + 𝛼𝐻1
1(𝑡, 𝑠) 

     +𝛼2 (−
𝐴1,1,1,𝑠

𝐴2,1,1,𝑠

𝐻1
1(𝑡, 𝑠) +

1

𝐴2,1,1,𝑠

𝐻2
1(𝑡, 𝑠)) + ⋯ 

= 1 + (𝛼 − 𝛼2
𝐴1,1,1,𝑠

𝐴2,1,1,𝑠

+ ⋯ ) 𝐻1
1(𝑡, 𝑠) 

     + (
𝛼2

𝐴2,1,1,𝑠

+ ⋯ ) 𝐻2
1(𝑡, 𝑠) + ⋯. 

Suppose that 𝑢: 𝑇 →  𝑅 is a given function which has a convergent series expansion of the form  

 𝑢 = ∑ 𝑢𝑗.∞
𝑗=0  (6) 

Suppose also that 𝑔: 𝑅 → 𝑅 is a given analytic function such that  

 𝑔(𝑢) = ∑ 𝐴𝑛
∞
𝑛=0 (𝑢0, 𝑢1, … , 𝑢𝑛), (7) 

where 𝐴𝑛, 𝑛 ∈ 𝑁0, are given by  
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𝐴0 = 𝑔(𝑢0)

𝐴𝑛 = ∑ 𝑐(𝜈, 𝑛)𝑔(𝜈)(𝑢0),𝑛
𝜈=1 𝑛 ∈ N.

 

Here the functions 𝑐(𝜈, 𝑛) denote the sum of products of 𝜈 components 𝑢𝑗 of 𝑢 given in (6), whose subscripts sum 

up to 𝑛, divided by the factorial of the number of repeated subscripts, i.e.,  

 𝐴0 = 𝑔(𝑢0), 

 𝐴1 = 𝑐(1,1)𝑔′(𝑢0) 

  = 𝑢1𝑔′(𝑢0), 

 𝐴2 = 𝑐(1,2)𝑔′(𝑢0) + 𝑐(2,2)𝑔′′(𝑢0) 

  = 𝑢2𝑔′(𝑢0) +
𝑢1

2

2!
𝑔′′(𝑢0), 

 𝐴3 = 𝑐(1,3)𝑔′(𝑢0) + 𝑐(2,3)𝑔′′(𝑢0) + 𝑐(3,3)𝑔′′′(𝑢0) 

  = 𝑢3𝑔′(𝑢0) + 𝑢1𝑢2𝑔′′(𝑢0) +
𝑢1

3

3!
𝑔′′′(𝑢0), 

 𝐴4 = 𝑐(1,4)𝑔′(𝑢0) + 𝑐(2,4)𝑔′′(𝑢0) + 𝑐(3,4)𝑔′′′(𝑢0) + 𝑐(4,4)𝑔(4)(𝑢0) 

  = 𝑢4𝑔′(𝑢0) + (𝑢1𝑢3 +
𝑢2

2

2
) 𝑔′′(𝑢0) +

𝑢1
2𝑢2

2
𝑔′′′(𝑢0) +

𝑢1
4

4!
𝑔(4)(𝑢0) 

and so on. Suppose now that 𝑢 is given by the convergent series  

 𝑢 = ∑ 𝑐𝑛𝐻𝑛
1∞

𝑛=0 (𝑥, 𝑥0). (8) 

We wish to find the respected transformed series for 𝑔(𝑢). From (6), we have  

 𝑢 = ∑ 𝑢𝑛
∞
𝑛=0 = ∑ 𝑐𝑛𝐻𝑛

1∞
𝑛=0 (𝑥, 𝑥0), 

and hence,  

 𝑢𝑛 = 𝑐𝑛𝐻𝑛
1(𝑥, 𝑥0) 𝑛 ∈ N0. 

Thus,  

 𝑔(𝑢) = ∑ 𝐴𝑛
∞
𝑛=0 (𝑢0, 𝑢1, … , 𝑢𝑛) 

 = 𝑔(∑ 𝑐𝑛
∞
𝑛=0 𝐻𝑛

1(𝑥, 𝑥0)) 

 = ∑ 𝐴𝑛∞
𝑛=0 (𝑐0, 𝑐1, … , 𝑐𝑛)𝐻𝑛

1(𝑥, 𝑥0). 

Hence,  

 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛) = 𝐴𝑛(𝑐0, 𝑐1, … , 𝑐𝑛)𝐻𝑛
1(𝑥, 𝑥0). 

For 𝑛 = 0, we have  

 𝑢0 = 𝑐0𝐻0
1(𝑥, 𝑥0). 

 = 𝑐0. 

Thus,  

 𝐴0(𝑢0) = 𝐴0(𝑐0)𝐻0
1(𝑥, 𝑥0) 

 = 𝐴0(𝑐0). 
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For 𝑛 = 1, we find  

 𝐴1(𝑢0, 𝑢1) = 𝑢1𝑔′(𝑢0) 

 = 𝐴1(𝑐0, 𝑐1)𝐻1
1(𝑥, 𝑥0) 

or  

 𝑐1𝐻1
1(𝑥, 𝑥0)𝑔′(𝑢0) = 𝐴1(𝑐0, 𝑐1)𝐻1

1(𝑥, 𝑥0), 

whereupon  

 𝐴1(𝑐0, 𝑐1) = 𝑐1𝑔′(𝑢0) 

 = 𝑐1𝑔′(𝑐0) 

 = 𝐴1(𝑐0, 𝑐1). 

For 𝑛 = 2, we have  

 𝐴2(𝑢0, 𝑢1, 𝑢2) = 𝐴2(𝑐0, 𝑐1, 𝑐2)𝐻2
1(𝑥, 𝑥0) 

or  

 𝑢2𝑔′(𝑢0) +
𝑢1

2

2
𝑔′′(𝑢0) = 𝐴2(𝑐0, 𝑐1, 𝑐2)𝐻2

1(𝑥, 𝑥0). 

Then  

 𝑐2𝐻2
1(𝑥, 𝑥0)𝑔′(𝑐0) +

𝑐1
2(𝐻1

1(𝑥,𝑥0))2

2
𝑔′′(𝑐0) = 𝐴2(𝑐0, 𝑐1, 𝑐2)𝐻2

1(𝑥, 𝑥0), 

or  

 (𝑐2𝑔′(𝑐0) +
𝑐1

2

2
𝑔′′(𝑐0)) 𝐻2

1(𝑥, 𝑥0) = 𝐴2(𝑐0, 𝑐1, 𝑐2)𝐻2
1(𝑥, 𝑥0), 

whereupon  

 𝐴2(𝑐0, 𝑐1, 𝑐2) = 𝑐2𝑔′(𝑐0) +
𝑐1

2

2
𝑔′′(𝑐0) 

 = 𝐴2(𝑐0, 𝑐1, 𝑐2). 

For 𝑛 = 3, we find  

 𝑢3𝑔′(𝑢0) + 𝑢1𝑢2𝑔′′(𝑢0) +
𝑢1

3

3!
𝑔′′′(𝑢0) = 𝐴3(𝑢0, 𝑢1, 𝑢2, 𝑢3) 

 = 𝐴3(𝑐0, 𝑐1, 𝑐2, 𝑐3)𝐻3
1(𝑥, 𝑥0) 

or  

 𝑐3𝐻3
1(𝑥, 𝑥0)𝑔′(𝑐0) + 𝑐1𝑐2𝐻3

1(𝑥, 𝑥0)𝑔′′(𝑥0) +
𝑐1

3

3!
𝑔′′′(𝑐0)𝐻3

1(𝑥, 𝑥0) = 𝐴3(𝑐0, 𝑐1, 𝑐2, 𝑐3)𝐻3
1(𝑥, 𝑥0), 

whereupon  

 𝑐3𝑔′(𝑐0) + 𝑐1𝑐2𝑔′′(𝑥0) +
𝑐1

3

3!
𝑔′′′(𝑐0) = 𝐴3(𝑐0, 𝑐1, 𝑐2, 𝑐3) 

 = 𝐴3(𝑐0, 𝑐1, 𝑐2, 𝑐3), 
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and so on. Therefore we get the following result. 

Theorem 2.2 Let 𝑢: T → R be a function with a convergent expansion given in (8). Let 𝑔: R → R be an analytic 

function having the form (7). Then  

 𝑔(𝑢) = 𝑔(∑ 𝑐𝑛𝐻𝑛
1(𝑥, 𝑥0)∞

𝑛=0 ) = ∑ 𝐴𝑛
∞
𝑛=0 (𝑐0, 𝑐1, … , 𝑐𝑛)𝐻𝑛

1(𝑥, 𝑥0). 

Example 2.2 For 𝛼 = 1, consider 𝑢 = 𝑒𝛼(𝑥, 𝑥0) and 𝑔(𝑢) = 𝑢2. Using Example 2.1, we have  

 𝑒𝛼(𝑥, 𝑥0) = ∑ 𝑐𝑚𝐻𝑚
1∞

𝑚=0 (𝑥, 𝑥0) 

where  

 𝑐0 = 1, 

 𝑐1 = 𝛼 − 𝛼2 𝐴1,1,1,𝑠

𝐴2,1,1,𝑠
+ ⋯ +, 

 𝑐3 =
𝛼2

𝐴2,1,1,𝑠
+ ⋯, 

 ⋮ 

Note that  

 (𝑒𝛼(𝑥, 𝑥0))2 = 𝑐0
2 + 2𝑐0𝑐1𝐻1

1(𝑥, 𝑥0) + ⋯. (9) 

On the other hand, by Theorem 2.2, we obtain  

 (𝑒𝛼(𝑥, 𝑥0))2 = ∑ 𝐴𝑚𝐻𝑚
1∞

𝑚=0 (𝑥, 𝑥0) 

and  

 𝐴0(𝑢0) = 𝐴0(𝑐0) 

 = 1 

 = 𝑐0
2, 

 𝐴1(𝑢0, 𝑢1) = 𝑐1𝑔′(𝑐0) 

 = 2𝑐0𝑐1 

and so on, i.e., we get (9).  

3. The Adomian Decomposition Method for the Problem (1), (2) 

In this section, we will introduce the Adomian decomposition method for the problem (1), (2). Firstly, note that 

the problem (1), (2) can be rewritten in the form  

 [𝑦𝛼Δ, 𝑦
𝛼Δ

] = [𝑓𝛼(𝑦), 𝑓
𝛼

(𝑦)] ,  𝑡 ∈ (𝑡0, 𝑇], 

 [𝑦𝛼(𝑡0), 𝑦
𝛼

(𝑡0)] = [𝑦0
𝛼 , 𝑦

0

𝛼
] ,  𝛼 ∈ [0,1]. 

Consider the problem  

 𝑦𝛼Δ = 𝑓𝛼(𝑦),  𝑡 > 𝑡0,  𝑦(𝑡0) = 0, (10) 
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where 𝑓𝛼: 𝑅 → 𝑅 is an analytic function. We propose a solution of the IVP (10), in the form  

 𝑦𝛼(𝑡) = ∑ 𝑐𝑗𝐻𝑗
1∞

𝑗=0 (𝑡, 𝑡0),  𝑡 ≥ 𝑡0. 

In addition, assume that  

 𝑓𝛼(𝑦) = ∑ 𝐴𝑗
∞
𝑗=0 (𝑐0, … , 𝑐𝑗)𝐻𝑗

1(𝑡, 𝑡0),  𝑡 ≥ 𝑡0. 

Note that  

 𝑦𝛼(𝑡) = 𝑐0 + ∑ ∑ 𝑐𝑗𝐵𝑘
𝑗
ℎ𝑘

𝑗
𝑘=1

∞
𝑗=1 (𝑡, 𝑡0),  𝑡 ≥ 𝑡0. (11) 

and  

 𝑓𝛼(𝑦) = 𝐴0(𝑐0) + ∑ ∑ 𝐴𝑗
𝑗
𝑘=1

∞
𝑗=1 (𝑐0, … , 𝑐𝑗)𝐵𝑘

𝑗
ℎ𝑘(𝑡, 𝑡0),  𝑡 ≥ 𝑡0. (12) 

Let  

 L (𝑦𝛼(𝑡)) (𝑧) = 𝑌(𝑧). 

Then, we have the following  

 L (𝑦𝛼Δ(𝑡)) (𝑧) = 𝑧𝑌(𝑧) − 𝑦𝛼(𝑡0) = 𝑧𝑌(𝑧). 

Now, we take the Laplace transform of both sides of the dynamic equation (10) we obtain  

 
𝑧𝑌(𝑧) = L(𝐴0(𝑐0) + ∑ ∑ 𝐴𝑗

𝑗
𝑘=1

∞
𝑗=1 (𝑐0, … , 𝑐𝑗)𝐵𝑘

𝑗
ℎ𝑘(𝑡, 𝑡0))(𝑧)

= 𝐴0(𝑐0)
1

𝑧
+ ∑ ∑ 𝐴𝑗

𝑗
𝑘=1

∞
𝑗=1 (𝑐0, … , 𝑐𝑗)𝐵𝑘

𝑗 1

𝑧𝑘+1 .
 

Thus, we arrive at  

 𝑌(𝑧) = 𝐴0(𝑐0)
1

𝑧2 + ∑ ∑ 𝐴𝑗
𝑗
𝑘=1

∞
𝑗=1 (𝑐0, … , 𝑐𝑗)𝐵𝑘

𝑗 1

𝑧𝑘+2. 

Now, we apply the inverse Laplace transform of both sides of the last equation and we find  

 𝑦𝛼(𝑡) = 𝐴0(𝑐0)ℎ1(𝑡, 𝑡0) + ∑ ∑ 𝐴𝑗
𝑗
𝑘=1

∞
𝑗=1 (𝑐0, … , 𝑐𝑗)𝐵𝑘

𝑗
ℎ𝑘+1(𝑡, 𝑡0). 

Using (11), we get  

 𝑐0 + ∑ ∑ 𝑐𝑗𝐵𝑘
𝑗
ℎ𝑘

𝑗
𝑘=1

∞
𝑗=1 (𝑡, 𝑡0) = 𝐴0(𝑐0)ℎ1(𝑡, 𝑡0) + ∑ ∑ 𝐴𝑗

𝑗
𝑘=1

∞
𝑗=1 (𝑐0, … , 𝑐𝑗)𝐵𝑘

𝑗
ℎ𝑘+1(𝑡, 𝑡0). 

In order to equate the coefficients of the time scale monomials ℎ𝑘(𝑡, 𝑡0) on both sides, we reorder the sums as 

follows.  

 
𝑐0 + (∑ 𝑐𝑗𝐵1

𝑗∞
𝑗=1 )ℎ1(𝑡, 𝑡0) + ∑ (∑ 𝑐𝑗𝐵𝑘

𝑗∞
𝑗=𝑘 )∞

𝑘=2 ℎ𝑘(𝑡, 𝑡0)

= 𝐴0(𝑐0)ℎ1(𝑡, 𝑡0) + ∑ ∑ 𝐴𝑗
∞
𝑗=𝑘−1

∞
𝑘=2 (𝑐0, … , 𝑐𝑗)𝐵𝑘−1

𝑗
ℎ𝑘(𝑡, 𝑡0).

 

This results in the following nonlinear system for determining the constants 𝑐𝑗, 𝑗 = 0,1, ….  

 

𝑐0 = 0,

∑ 𝑐𝑗𝐵1
𝑗∞

𝑗=1 = 𝐴0(𝑐0) = 𝑓𝛼(0)

∑ 𝑐𝑗𝐵𝑘
𝑗∞

𝑗=𝑘 = ∑ 𝐴𝑗
∞
𝑗=𝑘−1 (𝑐0, … , 𝑐𝑗)𝐵𝑘−1

𝑗
,  𝑘 ≥ 2.

 (13) 
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Notice that the system is infinite and nonlinear in its unknowns. However, the nonlinearity is of polynomial type. 

This is a results of the nonlinear structure of the function 𝑓𝛼. 

Now, consider the problem  

 𝑦
𝛼Δ

= 𝑓
𝛼

(𝑦),  𝑡 > 𝑡0,  𝑦(𝑡0) = 0, (14) 

where 𝑓
𝛼

: 𝑅 → 𝑅 is an analytic function. We will search a solution of the IVP (14), in the form  

 𝑦
𝛼

(𝑡) = ∑ 𝑐𝑗𝐻𝑗
1∞

𝑗=0 (𝑡, 𝑡0),  𝑡 ≥ 𝑡0. 

Assume that  

 𝑓
𝛼

(𝑦) = ∑ 𝐴𝑗
∞
𝑗=0 (𝑐0, … , 𝑐𝑗)𝐻𝑗

1(𝑡, 𝑡0),  𝑡 ≥ 𝑡0. 

We have  

 𝑦
𝛼

(𝑡) = 𝑐0 + ∑ ∑ 𝑐𝑗𝐵𝑘

𝑗
ℎ𝑘

𝑗
𝑘=1

∞
𝑗=1 (𝑡, 𝑡0),  𝑡 ≥ 𝑡0. (15) 

and  

 𝑓
𝛼

(𝑦) = 𝐴0(𝑐0) + ∑ ∑ 𝐴𝑗
𝑗
𝑘=1

∞
𝑗=1 (𝑐0, … , 𝑐𝑗)𝐵𝑘

𝑗
ℎ𝑘(𝑡, 𝑡0),  𝑡 ≥ 𝑡0. (16) 

As above, we get the following system for the constants 𝑐𝑗, 𝑗 = 0,1, ….  

 

𝑐0 = 0,

∑ 𝑐𝑗𝐵1

𝑗∞
𝑗=1 = 𝐴0(𝑐0) = 𝑓

𝛼
(0)

∑ 𝑐𝑗𝐵𝑘

𝑗∞
𝑗=𝑘 = ∑ 𝐴𝑗

∞
𝑗=𝑘−1 (𝑐0, … , 𝑐𝑗)𝐵𝑘−1

𝑗
,  𝑘 ≥ 2.

 (17) 

4. A Numerical Example 

Consider the initial value problem associated with the first order nonlinear fuzzy dynamic equation of the form  

 [𝑦𝛼Δ(𝑡), 𝑦
𝛼Δ

(𝑡)] = [𝑒𝛼𝑦(𝑡), 𝑒2𝛼𝑦(𝑡)],  𝑡 ≥ 0,  𝑦(𝑡0) = [0,0], (18) 

𝛼 ∈ [0,1]. Consider the IVP  

 𝑦𝛼Δ(𝑡) = 𝑒𝛼𝑦(𝑡),  𝑦
𝛼

(0) = 0. 

Assume that the solution has the series representation  

 𝑦(𝑡) = ∑ 𝑐𝑗𝐻𝑗
1∞

𝑗=0 (𝑡, 0),  𝑡 ≥ 0, 

where 𝑐𝑗, 𝑗 ∈ 𝑁0 are the coefficients to be determined.  

 𝑓(𝑦) = 𝑒𝛼𝑦(𝑡) = ∑ 𝐴𝑗
∞
𝑗=0 (𝑐0, … , 𝑐𝑗)𝐻𝑗

1(𝑡, 0),  𝑡 ≥ 0, 

where  
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𝐴0 = 𝑓(𝑐0)

= 𝑒𝛼𝑐0

𝐴1 = 𝑐1𝑓′(𝑐0)

= 𝛼𝑐1𝑒𝛼𝑐0

𝐴2 = 𝑐2𝑓′(𝑐0) +
𝑐1

2

2!
𝑓′′(𝑐0)

= (𝛼𝑐2 +
(𝛼𝑐1)2

2!
) 𝑒𝛼𝑐0

𝐴3 = 𝑐3𝑓′(𝑐0) + 𝑐1𝑐2𝑓′′(𝑐0) +
𝑐1

3

3!
𝑓′′′(𝑐0)

= (𝛼𝑐3 + 𝛼2𝑐1𝑐2 +
(𝛼𝑐1)3

3!
) 𝑒𝛼𝑐0

𝐴4 = 𝑐4𝑓′(𝑐0) + (𝑐1𝑐3 +
𝑐2

2

2
) 𝑓′′(𝑐0) +

𝑐1
2𝑐2

2
𝑓′′′(𝑐0) +

𝑐1
4

4!
𝑓(4)(𝑐0)

= (𝛼𝑐4 + 𝛼2𝑐1𝑐3 +
(𝛼𝑐2)2

2
+

𝛼3𝑐1
2𝑐2

2
+

(𝛼𝑐1)4

4!
) 𝑒𝛼𝑐0

⋯

 (19) 

The infinite nonlinear system for this example has the form  

 

𝑐0 = 0,

𝑐1𝐵1
1 + 𝑐2𝐵1

2 + 𝑐3𝐵1
3 + ⋯ = 1

𝑐2𝐵2
2 + 𝑐3𝐵2

3 + 𝑐4𝐵2
4 + ⋯ = 𝛼𝑐1𝐵1

1 + (𝛼𝑐2 +
(𝛼𝑐1)2

2!
) 𝐵1

2 + ⋯

𝑐3𝐵3
3 + 𝑐4𝐵3

4 + 𝑐5𝐵3
5 + ⋯ = (𝛼𝑐2 +

(𝛼𝑐1)2

2!
) 𝐵2

2 + ⋯

⋯

 (20) 

Solving this nonlinear system one can approximately obtain 𝑐𝑖, 𝑖 ∈ 𝑁, and hence, the approximate solution of the 

initial value problem which is  

 𝑦𝛼(𝑡) = 𝑐1𝐻1
1(𝑡, 0) + 𝑐2𝐻2

1(𝑡, 0) + 𝑐3𝐻3
1(𝑡, 0) + ⋯ (21) 

As above,  

 𝑦
𝛼

(𝑡) = 𝑐1𝐻1
1(𝑡, 0) + 𝑐2𝐻2

1(𝑡, 0) + 𝑐3𝐻3
1(𝑡, 0) + ⋯ (22) 

where  

 

𝑐0 = 0,

𝑐1𝐵1
1 + 𝑐2𝐵1

2 + 𝑐3𝐵1
3 + ⋯ = 1

𝑐2𝐵2
2 + 𝑐3𝐵2

3 + 𝑐4𝐵2
4 + ⋯ = 2𝛼𝑐1𝐵1

1 + (2𝛼𝑐2 +
(2𝛼𝑐1)2

2!
) 𝐵1

2 + ⋯

𝑐3𝐵3
3 + 𝑐4𝐵3

4 + 𝑐5𝐵3
5 + ⋯ = (2𝛼𝑐2 +

(2𝛼𝑐1)2

2!
) 𝐵2

2 + ⋯

⋯

 (23) 

Let T = 2N0 and 𝑡0 = 1. Then 𝜎(𝑡) = 2𝑡, 𝑡 ∈ T, and  

 ℎ1(𝑡, 𝑡0) = ℎ1(𝑡, 1) 

 = 𝑡 − 1,  𝑡 ∈ T. 

Next,  

 ℎ2(𝑡, 𝑡0) =
𝑡2

3
− 𝑡 +

2

3
,  𝑡 ∈ T. 

Really,  

 ℎ2
Δ(𝑡, 𝑡0) =

𝜎(𝑡)+𝑡

3
− 1 
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 =
2𝑡+𝑡

3
− 1 

 = 𝑡 − 1 

 = ℎ1(𝑡, 𝑡0),  𝑡 ∈ T. 

Moreover,  

 ℎ3(𝑡, 𝑡0) =
𝑡3

21
−

𝑡2

3
+

2

3
𝑡 −

8

21
,  𝑡 ∈ T. 

Indeed,  

 ℎ3
Δ(𝑡, 𝑡0) =

(𝜎(𝑡))2+𝑡𝜎(𝑡)+𝑡2

21
−

𝜎(𝑡)+𝑡

3
+

2

3
 

 =
(2𝑡)2+𝑡(2𝑡)𝑡2

21
−

2𝑡+𝑡

3
+

2

3
 

 =
4𝑡2+2𝑡2+𝑡2

21
−

3𝑡

3
+

2

3
 

 =
7𝑡2

21
− 𝑡 +

2

3
 

 =
1

3
𝑡2 − 𝑡 +

2

3
 

 = ℎ2(𝑡, 𝑡0),  𝑡 ∈ T. 

Note that  

 𝐻𝑛
1(𝑡, 𝑡0) = (𝑡 − 𝑡0)𝑛 

 = (𝑡 − 1)𝑛 𝑡 ∈ T. 

Then  

 𝐻2
1(𝑡, 𝑡0) = (𝑡 − 1)2 

 = 𝑡2 − 2𝑡 + 1, 

 𝐻3
1(𝑡, 𝑡0) = (𝑡 − 1)3 

 = 𝑡3 − 3𝑡2 + 3𝑡 − 1,  𝑡 ∈ T. 

For 𝑛 = 1, we get  

 𝐻1
1(𝑡, 𝑡0) = 𝐵1

1ℎ1(𝑡, 𝑡0),  𝑡 ∈ T, 

whereupon  

 𝑡 − 1 = 𝐵1
1(𝑡 − 1),  𝑡 ∈ T. 

Therefore 𝐵1
1 = 1. For 𝑛 = 2, we find  

 𝐻2
1(𝑡, 𝑡0) = 𝐵1

2ℎ1(𝑡, 𝑡0) + 𝐵2
2ℎ2(𝑡, 𝑡0),  𝑡 ∈ T, 

or  

 (𝑡 − 1)2 = 𝐵1
2(𝑡 − 1) + 𝐵2

2 (
𝑡2

3
− 𝑡 +

2

3
) ,  𝑡 ∈ T, 
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or  

 𝑡2 − 2𝑡 + 1 = 𝐵1
2𝑡 − 𝐵1

2 +
𝐵2

2

3
𝑡2 − 𝐵2

2𝑡 +
2

3
𝐵2

2 

 =
𝐵2

2

3
𝑡2 + (𝐵1

2 − 𝐵2
2)𝑡 +

2

3
𝐵2

2 − 𝐵1
2 ,  𝑡 ∈ T, 

whereupon we get the system  

 
𝐵2

2

3
= 1 

 𝐵1
2 − 𝐵2

2 = −2 

 
2

3
𝐵2

2 − 𝐵1
2 = 1, 

whose solutions are  

 𝐵1
2 = 1 

 𝐵2
2 = 3. 

Next,  

 𝐻3
1(𝑡, 𝑡0) = 𝐵1

3ℎ1(𝑡, 𝑡0) + 𝐵2
3ℎ2(𝑡, 𝑡0) + 𝐵3

3ℎ3(𝑡, 𝑡0),  𝑡 ∈ T, 

or  

 (𝑡 − 1)3 = 𝐵1
3(𝑡 − 1) + 𝐵2

3 (
𝑡2

3
− 𝑡 +

2

3
) + 𝐵3

3 (
𝑡3

21
−

𝑡2

3
+

2

3
𝑡 −

8

21
), 

𝑡 ∈ 𝑇, or  

 𝑡3 − 3𝑡2 + 3𝑡 − 1 = 𝐵1
3𝑡 − 𝐵1

3 +
𝐵2

3

3
𝑡2 − 𝐵2

3𝑡 +
2

3
𝐵2

3 +
𝐵3

2

21
𝑡3 −

𝐵3
3

3
𝑡2 +

2

3
𝐵3

3𝑡 −
8

21
𝐵3

3 

 =
𝐵3

3

21
𝑡3 + (

𝐵2
3

3
−

𝐵3
3

3
) 𝑡2 + (𝐵1

3 − 𝐵2
3 +

2

3
𝐵3

3) 𝑡 + (−𝐵1
3 +

2

3
𝐵2

3 −
8

21
𝐵3

3) ,  𝑡 ∈ T, 

whereupon we get the system  

 
𝐵3

3

21
= 1 

 
𝐵2

3

3
−

𝐵3
3

3
= 1 

 𝐵1
3 − 𝐵2

3 +
2

3
𝐵3

3 = 3 −𝐵1
3 +

2

3
𝐵2

3 −
8

21
𝐵3

3 = −1, 

whose solutions are  

 𝐵1
3 = 1 

 𝐵2
3 = 12 

 𝐵3
3 = 21. 

Now, we consider the first four equations of (20) with the following approximations  

 𝑐0 = 0 

 𝑐1𝐵1
1 + 𝑐2𝐵1

2 + 𝑐3𝐵1
3 = 1 
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 𝑐2𝐵2
2 + 𝑐3𝐵2

3 = 𝛼𝑐1𝐵1
1 + (𝛼𝑐2 +

(𝛼𝑐1)2

2
) 𝐵1

2 

 𝑐3𝐵3
3 = (𝛼𝑐2 +

(𝛼𝑐1)2

2
) 𝐵2

2 

or  

 𝑐0 = 0 

 𝑐1 + 𝑐2 + 𝑐3 = 1 

 3𝑐2 + 12𝑐3 = 𝛼𝑐1 + (𝛼𝑐2 +
𝛼2𝑐1

2

2
) 

 21𝑐3 = 3 (𝛼𝑐2 +
𝛼2𝑐1

2

2
), 

whereupon we get  

 (𝑐1)1,2 =
𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 , 

 (𝑐2)1,2 =
1

2(𝛼+7)
(−𝛼2 (

𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 )
2

− 14 (
𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 ) + 14) 

 (𝑐3)1,2 =
1

2(𝛼+7)
(𝛼2 (

𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 )
2

− 2𝛼 (
𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 ) + 2𝛼). 

Replacing 𝛼 with 2𝛼, we find  

 (𝑐1)1,2 =
4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 , 

 (𝑐2)1,2 =
1

2(2𝛼+7)
(−4𝛼2 (

4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 )
2

−

14 (
4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 ) + 14) 

 (𝑐3)1,2 =
1

2(2𝛼+7)
(4𝛼2 (

4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 )
2

−

4𝛼 (
4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 ) + 2𝛼) 

Therefore approximative solutions are  

 

𝑦𝛼(𝑡) = 𝑐0 + 𝑐1𝐻1
1(𝑡, 1) + 𝑐2𝐻2

1(𝑡, 1) + 𝑐3𝐻3
1(𝑡, 1)

=
𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 (𝑡 − 1),

+
1

2(𝛼+7)
(−𝛼2 (

𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 )
2

−14 (
𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 ) + 14)(𝑡 − 1)2

+
1

2(𝛼+7)
(𝛼2 (

𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 )
2

−2𝛼 (
𝛼2+12𝛼+21±√(𝛼2+12𝛼+21)2−4𝛼2(5𝛼+21)

2𝛼2 ) + 2𝛼)(𝑡 − 1)3

 



Ramadan et al. Mathematical Structures and Computational Modeling, 1, 2025 

 

86 

and  

 

Figure 1: 𝛼 =
1

4
 

 

Figure 2: 𝛼 =
2

3
 

 

Figure 3: 𝛼 =
7

8
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𝑦
𝛼

(𝑡) = 𝑐0 + 𝑐1𝐻1
1(𝑡, 1) + 𝑐2𝐻2

1(𝑡, 1) + 𝑐3𝐻3
1(𝑡, 1)

=
4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 (𝑡 − 1)

+
1

2(2𝛼+7)
(−4𝛼2 (

4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 )
2

−14 (
4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 ) + 14)(𝑡 − 1)2

+
1

2(2𝛼+7)
(4𝛼2 (

4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 )
2

−4𝛼 (
4𝛼2+24𝛼+21±√(4𝛼2+24𝛼+21)2−16𝛼2(10𝛼+21)

8𝛼2 ) + 2𝛼)(𝑡 − 1)3.

 

In Fig. (1) are shown the solutions for 𝛼 =
1

4
, in Fig. (2) below are shown the solutions for 𝛼 =

2

3
 and in Fig. (3) are 

shown the solutions for 𝛼 =
7

8
, respectively, at 𝑡 = 1,2,4,8,16,32,64. 

5. Conclusions 

In the present paper we have presented some aspects of the powerful method introduced by G. Adomian to 

solve nonlinear first order fuzzy dynamic equations on arbitrary time scales. Usually this method is known as the 

Adomian Decomposition Method, or ADM for short. Firstly, we give an analysis of ADM for arbitrary time scales. 

Then, we apply ADM for a class of nonlinear fuzzy dynamic equations in the case when the right hand side of the 

equation is an analytic function. The results in this paper are provided with a suitable example. The proposed 

techniqie in this paper can be applied for second order nonlinear fuzzy dynamic equations on arbitrary time scales. 

As future researches the authors intend to apply the Adomian decomposition method for systems fuzzy dynamic 

equations on time scales and higher order fuzzy dynamic equations on time scales. 
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