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1. Introduction

The primary objective of the controllability problem is to determine whether it is possible to steer the solution
of a system to a prescribed final state through the application of an appropriate control. This question arises
naturally in the context of oscillatory systems such as wave or beam equations where the aim is to suppress
undesired vibrations by acting either within a subregion of the domain (internal control) or along its boundary
(boundary control).

In control theory, it is standard to approach these problems in a dual manner. The dual notion of controllability
is called observability: it is the ability to measure or observe the entire dynamics of the system through appropriate
sensors, using partial measurements taken from a region suited for control. Problems related to the control and
observation of wave equations have attracted considerable attention in recent years. In [6] and [7], Alabau studied
an abstract system of two second-order evolution equations that are weakly coupled. By establishing an indirect
observability inequality and employing the Hilbert Uniqueness Method, she proved that the system is exactly
controllable for sufficiently small coupling parameters using a single boundary control. In [2], Ben Aissa established
the equivalence between weak controllability and the weak observability inequality for second-order evolution
systems. Subsequently, Wehbe and Youssef in [5] examined the exact controllability of weakly coupled wave
equations with a localized internal control acting on only one component of the system. In [10], S.Gerbi et al.
investigated the exact controllability and stabilization of a system of two wave equations coupled through velocity
terms, with a local internal control applied to a single equation. They distinguished two cases. In the first case, when
the wave propagation speeds are equal, they applied a frequency domain method combined with the multiplier
technique to prove that the system is exponentially stable, provided the coupling region is included in the damping
region and satisfies the Geometric Control Condition (GCC). Relying on a result by Haraux [3], they established a key
indirect observability inequality, which, via the HUM, led to the exact controllability of the full system with a locally
distributed control. In the second case, when the wave speeds differ, they established an exponential decay in a
weaker energy space under appropriate geometric conditions. This also allowed them to deduce the exact
controllability of the system by invoking results from [3]. More recently, Akil and Hajjej [8] investigated the
exponential stability of second-order coupled wave equations involving the Laplacian operator and subject to a
locally acting internal viscous damping. They proved exponential stability under the Piecewise Multiplier Geometric
Condition (PMGC) on the damping region, without any restriction on the wave propagation speeds. Subsequently,
they also established the exact controllability of the system using the Hilbert Uniqueness Method.

To begin, let us consider the following transmission problems, which involves two wave systems:

U — A Uyy + ¢ (X)y =0, (x,t) e (0,Lo) XRY,
Yee = Yex T 1 (x)u =0, (x,t)e (0,Ly) xRjY, (1.1)
Dee — ApPxx + A2 ()P + 2(O)Y: =0, (x,t) € (Lo, L) XRY,
Y — Yrx — ()P =0, (x,t) € (Lo, L) XRY,

with fully Dirichlet boundary conditions,
u(0,t) =y(0,¢t) = ¢p(L,t) =y(L, t) =0, tER], (1.2)
and with the following initial data

(u, Y, d)l 1/)' U, Yt ¢t' ll}t)(x' 0) = (uO! Yo, ¢0! lpO! U1, Y1, ¢1! lpl) (’I 3)

and the following transmission conditions,

{ u(Lo,t) = ¢(Lo, 1), y(Lo,t) = P(Lo, 1), te R (1.4)

alux(LO' t) = a2¢)x(l‘0' t), yx(LO! t) = lpx(LO! t)' te R:-'

where
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_ ¢ if x € (ag,a3) ={ d, if x€(ByBs)
&1 (x) { 0  otherwise d>(%) 0 otherwise,

c; if x € (B, p3)

0 otherwise

() = {
and ay, a,, d, are strictly positives constants and ¢;, ¢, € R* (see 1).
Let (w,us, y,y:, d, dp, 0, ;) be a regular solution of system (1.1)-(1.4). The energy is given by
E(t) =5 [, (1uel? + ayugl? + [ye|? + 1212 + 2R(c, () dx
+2[L el + aal el + el + [ [?) dx.
A straightforward computation gives

SE(t) = — [, dy(0)|¢e|? dx < 0.

Bouchal and Mebarki

(1.5)

(1.6)

(1.8)

Thus, the system (1.1)-(1.4) is dissipative in the sense that its energy is a non increasing function with respect to

the time variable t. Now, we introduce the following Hilbert spaces
Hi(a,b) ={f € H'(a,b); f(a) = 0}
and
Hi(a,b) = {f € H'(a,b); f(b) =0},
for any real numbers a, b such that a < b. Then, the energy space H is defined by

H= { [H;(0,Lo) x L*(0, Lo)]* x [Hi (Lo, L) X L?(Lo, L)]? }
suchthat  u(Ly) = ¢(Ly) and  y(Ly) = Y(Ly))

equipped with the following norm
NUNE = aglluglZ2o,, + 1012200, + 1200, + 121120 0,
+2% J,° ¢, (Ouydx + aylldullZe gy, 1y + 011, 4
el 22 1y + 11, 1

forallU = (w,v,y,z,¢,1n,9,&)T € H.

]

0 dl C‘IS LIO .Bll ﬁlz .Bla fj4 L
Figure 1: Geometric description of the functions ¢y, ¢, and d,.
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By applying the Lumer-Phillips theorem (see [4]), the authors in [1] establish the well-posedness of the system
(1.1)-(1.4). Then, using a frequency domain approach based on multiplier techniques, they proved the exponential
stability of the problem in the case where the damping region intersects the coupling region, and the waves in the
second coupled equation propagate at the same speed, i.e., a, = 1, (see Theorem 4.1 in [1]).

Our purpose in this paper is to study the internal exact controllability of system (1.9)-(1.10). To our knowledge,
no prior research has addressed the observability and exact controllability of this problem. The present work aims
to bridge this gap by examining the following coupled system:

Ue — A Uyy + 1 (X)y =0, (x,t)e (0,Ly) xRjY,
Yee = Yax T 1 (x)u =0, (x,t) € (0,Ly) xRY,
Dee — ArPxx + (DY = dy (X)), (x,t) € (Lo, L) XRjY,
] Yee — Pux — ()P, =0, (xt) € (Lo L) xRy, (1.9
u(0,t) =y(0,t) = ¢p(L,t) =y(L,t) =0, t € R%,
(w,y,ug, ¥e)(x,0) = (o, Yo, U, Y1), x € (0,Lo),
(D0, e, ¥ (x,0) = (Po, Yo, b1, 1), X € (Lo, L).

with the following transmission conditions,

{ u(LO' t) = ¢(L0' t)' y(LO' t) = l/)(LO' t)' te Ri' (1 10)
AUy (Lo, t) = azx (Lo, t), Yx(Lo,t) = Pu(Lo,t), t€ RY, ’

where v is an appropriate control.

The idea is to use a result of A. Haraux in [3] for which the observability of the homogeneous system associated
to (1.9)-(1.10) is equivalent to the exponential stability of the system (1.1)-(1.4). Next,by the Hilbert Uniqueness
Method introduced by J. L. Lions in [9], we derive the exact controllability of system (1.9)-(1.10).

2. Observability and Exact Controllability

Consider the following homogeneous system related to (1.9)-(1.10) by

Pet — Q1Pxx + €1(X)q =0, (x,t) € (0,Ly) X R%,
Gee — Qux T 1 (X)p =0, (x,t) € (0,Ly) X R%,

Nee = AaMxx + C2(X)E = 0, (x,t) € (Lo, L) xR,

St — &xx — (XM = 0, (x,t) € (Lo, L) XRY, (2.1)
p(0,6) =q(0,t) =n(L,t) =§(L,t)=0, te€ R},

(P, 9,0t q:) (%, 0) = (Po, o, P1, G1)> x € (0, Lo),

M€, 1¢,¢) (%, 0) = (Mo, €0, M1, 1), x € (Lo, L).

with the transmission conditions,

{ p(LOI t) = U(Lo» t), q(LOI t) = E(LO! t)! te R:-' (2 2)
alpx(LO' t) = aznx(LO: t): Qx(LO' t) = Ex(LO' t)' te R:—-

LetV = (p,pe, 4, 951, 11, €, ;) be a regular solution of system (2.1)-(2.2), its associated total energy is given by
E(t) =3 [;°(Ipel? + aulpal? + 1012 + 1ax 12 + 2%(c; ()p) dx (2.3)
2 [ (el? + aznel? + 1el? + 1&]7) dx.
A straightforward computation gives
S E(t) = 0. (2.4)
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Thus, system (2.1)-(2.2) is conservative in the sense that its energy E(t) is constant. It is also wellposed and admits
a unique solution (see [1]) in the energy space H.

We begin by proving the following theorem, which provides both the direct and inverse inequalities

Theorem 2.1 Assume that a, = 1. Then there exists atime T, > 0 such thatfor all T > T,, there exist two constants
C,, C, > 0 such that the solution of the homogeneous system (2.1)-(2.2) satisfies the following inequalities

T L
GlVolli < [y [, d2 (Inel*dxdt < G IVl (2.5)

for a” VO = (pOI p1’ qO; (h; 7]0; 7]1' EO' 61) € H

Proof. Using Cauchy-Schwarz inequality, the definition of the total energy and the fact that the system (2.1)-(2.2)
is conservative, we obtain the direct inequality. While the proof of the inverse inequality is a direct consequence of
Proposition 2 of A. Haraux in [3] for which the exponentially stability of the system (1.1)-(1.4) is equivalent to the
observability inequality (2.5).

Now, we are ready to examine the exact controllability of the control problem (1.9)-(1.10) by using the HUM. Let
vo € L2(0,T; L2(B,, Bs)), We define the control function

v(t) = —2vo(t) € [HE(0,T; 12(By, B2))], (2.6)

where the derivative % is taken in the sense of the duality H(0,T; L2(B,, 8,)) and its dual [HA(0, T; L2(B,, B4))], that is,

— [y oo (®u(®)dt = [} vo(t) S p(®)dt, Vu € Hy(0,T;L12(By, By))-
Then we have the followig result

Theorem 2.2 Let T > 0. Assume that a, = 1 and let

UO = (uOJ U1, Y0, Y1, ¢0' ¢111/)0' ll}l) € C' v = _%UO € [HI%(O' T; LZ(.BZ'.B4))]'
then (1.9)-(1.10) has a unique weak solution

U= u,y,y o ¢, ) € C°([0,T]; 0),

where

C= { [L2(0, Lo) x (HE(0, Lo))]? X [L?(Lo, L) % (Hp (LO'L))]Z}
suchthat p(Ly) =n(Ly) and q(Ly) =¢&(Ly) )

Proof. Let (p,p:, q,9:m, 1 €, &) be the solution of the homogeneous system (2.1)-(2.2). Multiplying (1.9)1 by p,
(1.9)2 by q, (1.9)3 by 1, (1.9)4 by ¢, integrating by parts on (0,T) x (0, L,) for the first two equations and integrating
by parts on (0,T) x (L,, L) for the last two equations, then summing up, we get

[y ue(Mp(T)dx + [} ye(T)a(T)dx + [ ¢e(TIN(T)dx + [, e (TIE(T)dx
= [ pe(TYu(T)dx = [[° @ (MY (T)dx = [} ne(T)$(Tydx — [ &(TYp(T)dx

= J;" ue(0)p(0)dx + [;° y:(0)q(0)dx + [} $-(0)n(0)dx + [/ ¥ (0)¢(0)dx (2.7)
= 13" peO)u(0)dx — [, 4. (0)y(0)dx — [/ 1 (0)p(0)dx — [,/ £.(0)p(0)dx

+ fOT fLLO d, (x)v(t)ndxdt.
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Note that

0= { [(HE(0,Lg)) x L*(0, Lo)]* x [(Hi (Lo, L)) X L*(Ly, L)]z}
suchthat p(Ly) =n(L,) and q(Ly) = &(Ly)

consequently, we obtain
(e (T), =u(T), ye(T), =y(T), ¢ (T), =P (1), ¥e (T), = (1)), V(T uixn
= (w1, —to, Y1, =Y, $1, =P, Y1, —P0), Vol + J [, d2(x) v(e)ndlxde (2.8)
=F(V,).
Thanks to the direct observability inequality (2.5), we have

1Pl < W0ol,z(o r2cs, 5, + Vol (29)

By the help of the Riesz representation theorem, there exists a unique element Z(x,t) € H' solution of
F(Vo) = (Z, VO)H/XH VVO € H. (2.10)
Then, U(x,t) = Z(x,t) is the weak solution of the control system (1.9)-(1.10).

We now turn to the analysis of the problem of locally internal exact controllability. Specifically, given a sufficiently
large time T > 0 and an initial state U,, we investigate whether there exists an appropriate control function v such
that the corresponding solution of the control system (1.9)-(1.10) reaches the equilibrium at time T, i.e.,

u(T) = u(T) = y(T) = ye(T) = ¢(T) = ¢(T) = P(T) = P(T) = 0.
By employing the Hilbert Uniqueness Method, we obtain the following result:

Theorem 2.3 Assume that a, = 1. For every T > (,, where C; is given in (2.5) and for every U, € H', there exists a
control v(t) € [HA(0,T; L?(B,, B4))]. such that the solution of (1.9)-(1.10) satisfies

u(T) = u(T) = y(T) = ye(T) = ¢(T) = ¢(T) = P(T) = P(T) = 0.
Proof. From the indirect inequalities (2.5), we consider the seminorm defined by
Wollé = J f; Imel? d,

where V = (p, s, 4, 451,16, €, &) is the solution of (2.1)-(2.2) associated to the initial condition V,. Taking the control
function v = %nt. Now, we solve the following time reverse problem:

(St~ MG T (X)X =0, (x,t) € (0,Ly) X R,
Xet — Xox T C1(x)s =0, (x,t) e (0,Ly) X R%,
d *
) Dy — Ay Pyy + ()Y, = dz(x)gm, (x,t) € (Lo, L) XRY, 2.11)
Wir — Wex — ()P, = 0, (x,t) € (Lo, L) xRY,
(C; XSt Xt)(x: T) = (0,0,0,0), X € (0, LO)!
(@, W, D, W,)(x,T) = (0,0,0,0), xe (Lo, L).

Using Theorem 2.2, the system (2.11) admits a unique solution
Z = (C' ct')(!)(t! (Dr CDL‘! lp! lpt) € CO([OJ T]! H,)
Define the operator
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AH-H
Vo = AVy = (5¢(0), =¢(0), x¢(0), =x(0), @ (0), =®(0), ¥ (0), =¥ (0)),

VvV, € H. Besides, we define the following linear form

(AVO, V0> =, [y nene dxdt = (VO,V0> , YV, €H, 2.12)
H

where (:,-)y is the scalar product related to the norm ||-||,;. Using Cauchy-Schwarz's inequality in (2.12), we have
that

Vol , WV, V, € H. (2.13)

H

(v vo) | < ol
HxH/

In particular, we obtain
{AVo, Voduxa: | = Vol vV € H.

Using (2.5), we deduce that the operator A is coercive and continuous on H. Thanks to Lax-Milgram theorem, we
have A is an isomorphism from H into H'. In particular, for every U, € C, there exists a solution V; € H such that

AVy = =Up = (6¢(0), =6(0), x¢(0), =x(0), ©.(0), =@ (0), ¥;(0), =¥ (0)).
It follows from the uniqueness of the solution of the time reverse problem (2.11) that
U=172.
Consequently, we obtain
u(T) = ue(T) = y(T) = y:(T) = $(T) = ¢(T) = Y(T) = ¥(T) = 0.
3. Conclusion

In the paper [1], we studied the stabilization of a local transmission problem involving two wave systems. The
first system is weakly coupled, whereas the second is strongly coupled with non-smooth coefficients. It was shown
that the energy of the system decays exponentially under the condition of equal wave propagation speeds (i.e., a, =
1).

In the present work, we establish the equivalence between the exponential stability of the system (1.1)a€"(1.4)

and an appropriate observability inequality, by applying a result of A. Haraux in [3]. Then, using the Hilbert
Uniqueness Method (HUM), introduced by J. L. Lions in [9], we deduce the exact controllability of the problem.
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