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1. Introduction

Definite integrals of elementary or rational functions against classical kernels such as (1 + x?)~%, sechx, or sech®x
frequently admit closed-form evaluations involving fundamental constants (such as =, in 2, Catalan’s constant G, and
special values of the Riemann zeta function). Such integrals arise naturally in harmonic analysis, probability, and
complex analysis, and have long served as testing grounds for transform and contour methods; many
representative examples and techniques can be found in standard references such as [2, 3, 4]. Recent work of
Barreto and Chesneau [1], for example, studied integrals of the form J'f(x)/(1+x2)dx and developed systematic

techniques for their evaluation.

In this paper we introduce and study a different but related class of integrals,

. 2
IU.] f fn(1+x4)) dx

— cosh x ’

in which a logarithmic change of scale is combined with a hyperbolic kernel. The mapping x = In(1 + x%) converts
algebraic behavior in x into exponential-type behavior in the logarithmic variable, suggesting a natural connection
with Mellin-type representations, while the kernel sechx possesses a particularly simple Fourier transform (see, e.g.,
[2, 3]). As a result, these integrals exhibit a structure in which Mellin and Fourier techniques can be combined
effectively, and in several cases this leads to unexpectedly simple closed-form evaluations.

Our goal is to develop a systematic framework for evaluating such integrals for broad families of functions f,
including logarithmic, power-type, and trigonometric dependences on In( 1 + x?). We present complete proofs using
two complementary approaches: complex-analytic methods based on residue calculus, and transform methods
relying on Fourier and Mellin representations. We also investigate asymptotic behavior in parameter-dependent
families and provide numerical verifications to illustrate the accuracy of the theoretical results.

The paper is organized as follows. In Section 2 we define the class of integrals under consideration and establish
basic structural properties together with sufficient conditions for convergence. Section 3 collects transform
identities that are used throughout the paper, and also contains the explicit evaluation of the logarithmic integral
jh(l+x2)/coshxdx by both transform methods and contour integration. In Section 4 we study parameter-

dependent families involving (1 + x*)~* and derive representations based on Fourier and Bessel transforms. Section
5 treats trigonometric dependences on In(1 + x%) and provides closed-form evaluations. Asymptotic behavior for
large parameters is discussed in Section 6. Section 7 presents open problems and possible generalizations, while
numerical verifications and graphical illustrations are given in Section 8. Finally, Section 9 contains concluding
remarks.

2 Definitions, Basic Properties and Convergence

Definition 2.1 Let f:R — C be a continuous function. We define

. 2
I[f] — fn(1+x%)) dx,

—o cosh x

whenever the integral converges, either absolutely or conditionally.

Lemma 2.2 (Evenness) If I[f] converges, then the integrand is an even function of x, and therefore

n(1+x2)) dx

1f1=2f"%

cosh x

Proof. Since cosh( — x) = coshx and In(1 + (—x)?) = In(1 + x?), the integrand is even in x. The identity follows by
symmetry of the integral over R.
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Lemma 2.3 (Growth condition for absolute convergence) Suppose there exist constants M > 0 and ¢ < 1 such
that

If (W)| < MecI™ forallu € R.

Then the integral I[f] converges absolutely.
Proof. For large |x| one has
In(1+x%)=2In|x|+0(), coshx:%e"".

Hence there exist constants C;, C, > 0 such that for |x| sufficiently large,

If (In(1 + x2))| < Me®lmA+D1 < ¢ |x|2¢, L < e,

coshx —

Therefore,

f(In(1+x?))

cosh x

< Clx|*¢e I

for some constant ¢ > 0 and all sufficiently large |x|. Since |x|**e~*l is integrable on R for every c < 1, the integral
I[f] converges absolutely.

3. Tools: Fourier Transform of sechx and a Fourier Representation for Rational
Factors

We collect two classical transform identities that will be used repeatedly.

Lemma 3.1 (Fourier transform of $x$) For all real w,

o) ele

—0 cosh x

dx = msech 2 (%)
In particular,

0 cos(wx)

dx = msech & (%)

—0 coshx

Proof. This is a classical Fourier-transform pair. A proof by contour integration evaluates f_°°oo e'®? [ cosh z dz over

a rectangle of height = and lets the horizontal sides tend to infinity; only the simple pole at z = in/2 contributes.
See, for example, [2, A83.982] or [3, Vol.~I, Ch.~IlI].

Lemma 3.2 (Fourier representation of $(1+a xA2)A-1$) Let a > 0. Then for all x € R,

1 1 oo
= —f e
1+ax?2  2y/a’->

~IsiVagisx gg.

Equivalently, the Fourier transform of (1 + ax?)~! is me ™51V /\/a.

Proof. This follows from the standard identity

[© e sINag=isx gg = 2/a

1+ax?’

which may be obtained by elementary integration or from Fourier transform tables (see [2, A§3.954]). Dividing both
sides by 2+v/a yields the stated representation.
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The logarithmic integral: J]n(l +x?)/ cosh xdx

Theorem 3.3

We present two independent proofs: a transform-based argument and a contour-integral approach.
Proof (A): transform method and differentiation under the integral sign

For a > 0, define
foo In(1+ax?)

J@ =],

coshx

By Lemma 2.3, differentiation under the integral sign is justified and yields

’ I x?
J (a) - f—°° (1+ax?2) cosh x
Using
x? 1 1
1+ax2 Z( - 1+ax2)'
we obtain

, _l( o dx (oo dx )
J'(@) T a f—oocoshx f—oo (1+ax?) cosh x/*

Since [~_sechxdx = m, it remains to evaluate the second integral.

By Lemma 3.2 and Fubini’s theorem,

o dx 1 e ygva( e 5
f—OO (1+ax?)coshx ~ 2va f—OO € (I—OO cosh x dx) ds.
Applying Lemma 3.1,
o dx  _ T (® —s|/Va s — T (®,-s/Va s
. T coms = Zﬁf_me sech & (2 ) ds = ﬁfo e sech & (2 ) ds.

Hence
’ 1 poo _
J'(a) = g(l - \/_afo e sNasech o (?) ds).
We now use a classical Laplace transform identity.

Lemma 3.4 If Ru > |Rv|, then

J, e sech(vs)ds = % g [1/; o (ﬁ + 1) —ye (i + 3)]’

2v 4

where ¢ denotes the digamma function.

Proof. This formula is classical and may be found, for example, in [3, Vol.~I, A§1.9] or derived using Mellin
transforms and the identity sechx = 2/(e* + e™*) together with Beta-function representations.

Applying Lemma 3.4 with u = 1/+/a and v = ©/2, we obtain

1 1 3

[ e sV sech (n?s)ds =%(T’ [1l) e (n_\l/a"'z) —ye (n_\/a-l_Z)]'
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Therefore

1 1 1 3

J@=3[1-mwe (E+)-ve (i)

Since J(0) = 0 and the integrand has a finite limit as a —» 0*, we integrate from 0 to 1. Using the substitution ¢t =
1/(mv/a) and standard digamma identities ¥ (z + 1) — ¥ (z) = 1/z together with duplication formulas (see [4]), a direct
computation yields

J) =nln2.
This proves the theorem.
Proof (B): contour integral

Let F(z) = In(1 + az?)/ cosh z with branch cuts from z = +i/v/a extending vertically. Integrating F over a rectangle
of height = in the upper half-plane and summing residues at the simple poles of sechz located at z = in(k + 1/2),
one obtains an expression equivalent to the transform evaluation above. The logarithmic branch contributes
cancellation terms which ultimately yield the same value J(1) = = In 2. Since this argument is longer and technically
routine, we omit the details.

4. Power Family: Integrals of (1 + x%)™“
For a > 0 we define
dx

I(a) = f_mm = [ (1 +x*)*sechxdx.

Proposition 4.1 (Fourier--Bessel representation).For Ra > 2

I(a) = if_oooo(l + x2)~% (w)sechx(—w)dw,

where the Fourier transform is defined by

h(w) = [* h(x)e* dx.

Moreover,

T

sechx(w) = msech & (Tw) (Lemma 3.1),
and, for Ra > %

3
Vm22~
I'la)

a 1
(1 +x2)"%(w) = lw|*2K ,_1(lw]),
2
where K, denotes the modified Bessel function of the second kind. Consequently,

_ e
YCS)

o 1
I(@) Jy o 2Ka—§ (w)sech @ (?) dw.

Proof. For Ra > % one has (1 + x2?)™% € L?(R), and clearly sechx € L?(R). Parseval's identity for the above Fourier

convention therefore yields

I f0g@dx = — [ f(w)g (—w)dw.
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Applying this with f(x) = (1 +x?)™® and g(x) = sechx gives the first identity. The expression for sechx follows
from Lemma 3.1, while the Fourier transform of (1 + x?)~% in terms of the Bessel function K,_,, is classical (see, for
example, [2, 4]). Finally, since the integrand is even in w, the integral may be written over (0, «).

Corollary 4.2 (The case $=1$)
I(1) = f_°° e nfoooe‘“’ sech @ (?) dw.

o (1+x2) cosh x

Proof. For @ = 1 the standard Fourier transform jdentity

1
= e~ vl
1+x2 (w) =me

holds. Substituting this into Parseval’s identity in Proposition 4.1, together with sechx(w) = nsech(nw/2), and using
evenness in w yields the result.

5. Trigonometric Dependence on the Logarithm
We consider f(u) = cos(Bu) and f(u) = sin( Bu) with g € R.

Theorem 5.1 For every real g,

® de = msech 2 (@)
> )

—0o cosh x
Proof idea (transform method). Write

cos(BIn(1+x2)) = R((1 + xH)¥).
One then evaluates

o (1+x2)if

—0 coshx

by expressing (1 + x2?)% through a Mellin-Barnes / Mellin-type representation and combining it with the Fourier
transform of sechx from Lemma 3.1. Carrying out the resulting transform integral and using analytic continuation
in B yields the closed form msech(nf/2), which is real-valued; taking real parts gives the claim. Details follow standard
Mellin-transform arguments; see [3, 4].

Corollary 5.2

o Si 2
J- sin(f In(14+x4)) dx =0 (,8 c R).

—0o cosh x

Proof. From the proof of Theorem 5.1, the complex integral J.(1+x2)iﬁsechxdx evaluates to the real quantity

nsech(nf/2). Therefore its imaginary part vanishes, which is precisely the stated sine integral.

6. Asymptotic Expansions and Parameter Analysis
We study I(a) as a — .
Proposition 6.1 (Large-$$ asymptotics) As a - o,

Vi -
(@) = [=+-55+0(@?),
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Proof. For large a, the main contribution comes from a neighborhood of x = 0. Use the Taylor expansions
In(1+x?) =x%- ’;—4 + 0(x9%), sechx =1 — xz—z +0(x%), (x - 0).
Write (1 + x2)™% = e~ n(1+x*) and scale x = y/va. Then
(1 + x2)%sechx = e (1 + 3}42—_;}2 + 0(0(‘2)), dx = %.
Integrating termwise gives
I@=z[ e dy+ 555 10,00 —yHe™ dy + 0(a™*/?).

Using the Gaussian moments je-yzdy= Jz. .[yze-yzdy= Jz/2, jy4e-y2dy=3ﬁ/4, we obtain

T Vi
[(CZ) = ;‘l‘ 8a3/?

+ 0(a™5/?),
as claimed.

7. Open Problems and Generalizations

We conclude by listing several natural extensions and open questions suggested by the present work.
[leftmargin=*]

1. Non-even kernels and nonlinear functions of the logarithm. For even kernels such as sechx, we have

shown that
oo sin(f In(1+x2)) _
f—°° cosh x dx =0 (b €R),

since the corresponding complex integral is real-valued. It would be interesting to study analogous logarithmic
oscillatory integrals when the hyperbolic kernel is replaced by a non-even or non-self-dual function, or when f is a
nonlinear function of In(1+ x?) such as f(u) = tanhu or f(u) = usinu, for which symmetry arguments no longer
apply and closed forms are unknown.

2. Parameterized hyperbolic and exponential kernels. A natural extension is to replace the kernel sechx by
sech(Ax) or by e *¢°sh* with 1 > 0, and to study how closed-form evaluations and asymptotic behavior depend on
the parameter A. In these cases the Fourier transform of the kernel is still explicitly known or expressible in terms
of special functions, suggesting that transform methods may remain applicable.

3. Higher-dimensional analogues. One may define, forn > 1,

_ f(n(1+PxP2))
L[f1= fRn cosh PxP d"x.
By radial symmetry this reduces to a one-dimensional integral with an additional power of the radius, involving
the surface measure |S™1|. It would be of interest to determine for which classes of functions f such integrals admit
closed forms and how the dimension n influences the analytic structure.

4. Connections with special functions and arithmetic structures. For specific choices of f, especially
involving trigonometric or exponential functions of In(1 + x?%), the resulting integrals may admit representations in
terms of special functions or constants with arithmetic significance. It is an open question whether certain cases
can be related to special values of L -functions, modular forms, or spectral expansions associated with hyperbolic
kernels.
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8. Numerical Verification and Plots

To illustrate the validity of the theoretical results, we present numerical evaluations for three representative
cases studied in the paper:

[leftmargin=*]

. 2
1. L= % "85 gy = 1in 2 ~ 21775860903,
2. 1(1) _ f_oo dx

00 (14+x2) coshx’

whose value is given by the integral representation in Corollary 4.2.

© 2
3. c(p) = [ LEREED) gy = psech = (L),

—0o cosh x
in particular C(1) = msech(m/2) = 1.2817169472.

In all cases, numerical quadrature was performed on the truncated interval [—6,6] using high-precision adaptive
integration (Simpson and Clenshaw-Curtis rules). Since all integrands decay exponentially, the truncation error is
negligible at the displayed precision.

Figs. (1-3) display the corresponding integrands.

Integrand: In(1 + x2)/coshx on [—6, 6]

0.5+

0.4

integrand
o
w

o
N

0.1

Figure 1: Integrand In(1 + x2)/ coshx on [—6,6]. The truncated numerical value is f_ss%dx ~ 2.1775859, which agrees with
the exact value T ln2 = 2.1775860903.

Integrand: 1/((1 + x?)coshx) on [—6, 6]
1.0

0.8

0.6

integrand

0.2

0.0

6 dx

Figure 2: Integrand 1/((1 + x?) cosh x) on [—6,6]. The numerical integral on [—6,6] is f_GW ~ 0.64085847, consistent with

the value obtained from Corollary 4.2.
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Integrand: cos(In(1 + x?))/cosh x on [—6, 6]
1.0

08

o
o

e
'Y

integrand

0.2

0.0

Figure 3: Integrand cos(In(1 + x?))/ coshx on [—6,6]. The truncated integral gives ff6%;:x2))dx ~ 1.2817169, in agreement
with the theoretical value msech(m/2) = 1.2817169472.

9. Concluding Remarks

In this paper we introduced and analyzed a new class of definite integrals combining logarithmic compositions
with hyperbolic kernels. For several families of functions f, including logarithmic, power-type, and trigonometric
dependences on In( 1+ x?), we obtained explicit evaluations and representations, supported by complete proofs
based on both residue calculus and transform methods (Fourier and Mellin techniques). We also derived asymptotic
expansions for parameter-dependent cases and provided numerical experiments illustrating the accuracy of the
closed-form results.

The class of integrals considered here admits numerous natural extensions, some of which were outlined in the
preceding section. We hope that the present framework may serve as a starting point for further investigations
involving other kernels, higher-dimensional analogues, and potential connections with special functions and
analytic number theory.
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