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ABSTRACT 

We introduce a generalized class of definite integrals  

𝐼[𝑓] = ∫
𝑓(𝑙𝑛( 1 + 𝑥2))

𝑐𝑜𝑠ℎ 𝑥
𝑑𝑥

∞

−∞

, 

where f is real- or complex-valued and satisfies mild growth conditions ensuring 

convergence. We obtain closed-form evaluations for several families of f, including 

polynomial/logarithmic choices, power-type families, and trigonometric functions of 

ln(1+x2). Full proofs of the intermediate lemmas and propositions are provided. Two 

complementary approaches are used: residue calculus for suitable meromorphic 

integrands and transform techniques based on Fourier and Mellin representations. We 

also derive asymptotic expansions for parameter families and include numerical 

verifications with illustrative plots. We conclude with open problems and natural 

generalizations.  
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1. Introduction 

Definite integrals of elementary or rational functions against classical kernels such as (1 + 𝑥2)−1, 𝑠𝑒𝑐ℎ𝑥, or 𝑠𝑒𝑐ℎ2𝑥 

frequently admit closed-form evaluations involving fundamental constants (such as 𝜋, 𝑙𝑛 2, Catalan’s constant 𝐺, and 

special values of the Riemann zeta function). Such integrals arise naturally in harmonic analysis, probability, and 

complex analysis, and have long served as testing grounds for transform and contour methods; many 

representative examples and techniques can be found in standard references such as [2, 3, 4]. Recent work of 

Barreto and Chesneau [1], for example, studied integrals of the form dxxxf ))/(1( 2+  and developed systematic 

techniques for their evaluation. 

In this paper we introduce and study a different but related class of integrals,  

 𝐼[𝑓] = ∫
𝑓(𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥, 

in which a logarithmic change of scale is combined with a hyperbolic kernel. The mapping 𝑥 ↦ 𝑙𝑛( 1 + 𝑥2) converts 

algebraic behavior in 𝑥 into exponential-type behavior in the logarithmic variable, suggesting a natural connection 

with Mellin-type representations, while the kernel 𝑠𝑒𝑐ℎ𝑥 possesses a particularly simple Fourier transform (see, e.g., 

[2, 3]). As a result, these integrals exhibit a structure in which Mellin and Fourier techniques can be combined 

effectively, and in several cases this leads to unexpectedly simple closed-form evaluations. 

Our goal is to develop a systematic framework for evaluating such integrals for broad families of functions 𝑓, 

including logarithmic, power-type, and trigonometric dependences on 𝑙𝑛( 1 + 𝑥2). We present complete proofs using 

two complementary approaches: complex-analytic methods based on residue calculus, and transform methods 

relying on Fourier and Mellin representations. We also investigate asymptotic behavior in parameter-dependent 

families and provide numerical verifications to illustrate the accuracy of the theoretical results. 

The paper is organized as follows. In Section 2 we define the class of integrals under consideration and establish 

basic structural properties together with sufficient conditions for convergence. Section 3 collects transform 

identities that are used throughout the paper, and also contains the explicit evaluation of the logarithmic integral 

dxxx cosh)/(1ln 2+  by both transform methods and contour integration. In Section 4 we study parameter-

dependent families involving (1 + 𝑥2)−𝛼 and derive representations based on Fourier and Bessel transforms. Section 

5 treats trigonometric dependences on 𝑙𝑛( 1 + 𝑥2) and provides closed-form evaluations. Asymptotic behavior for 

large parameters is discussed in Section 6. Section 7 presents open problems and possible generalizations, while 

numerical verifications and graphical illustrations are given in Section 8. Finally, Section 9 contains concluding 

remarks. 

2 Definitions, Basic Properties and Convergence 

Definition 2.1 Let 𝑓: R → C be a continuous function. We define  

 𝐼[𝑓] = ∫
𝑓(𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥, 

whenever the integral converges, either absolutely or conditionally.  

Lemma 2.2 (Evenness) If 𝐼[𝑓] converges, then the integrand is an even function of 𝑥, and therefore  

 𝐼[𝑓] = 2∫
𝑓(𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

∞

0
𝑑𝑥. 

Proof. Since 𝑐𝑜𝑠ℎ( − 𝑥) = 𝑐𝑜𝑠ℎ 𝑥 and 𝑙𝑛( 1 + (−𝑥)2) = 𝑙𝑛( 1 + 𝑥2), the integrand is even in 𝑥. The identity follows by 

symmetry of the integral over 𝑅.  
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Lemma 2.3 (Growth condition for absolute convergence) Suppose there exist constants 𝑀 > 0 and 𝑐 < 1 such 

that  

 |𝑓(𝑢)| ≤ 𝑀𝑒𝑐|𝑢|  forall𝑢 ∈ R. 

Then the integral 𝐼[𝑓] converges absolutely.  

Proof. For large |𝑥| one has  

 𝑙𝑛( 1 + 𝑥2) = 2 𝑙𝑛 | 𝑥| + 𝑂(1),   𝑐𝑜𝑠ℎ 𝑥 :
1

2
𝑒|𝑥|. 

Hence there exist constants 𝐶1, 𝐶2 > 0 such that for |𝑥| sufficiently large,  

 |𝑓(𝑙𝑛( 1 + 𝑥2))| ≤ 𝑀𝑒𝑐| 𝑙𝑛(1+𝑥
2)| ≤ 𝐶1|𝑥|

2𝑐 ,   
1

𝑐𝑜𝑠ℎ 𝑥
≤ 𝐶2𝑒

−|𝑥|. 

Therefore,  

 |
𝑓(𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥
| ≤ 𝐶|𝑥|2𝑐𝑒−|𝑥| 

for some constant 𝐶 > 0 and all sufficiently large |𝑥|. Since |𝑥|2𝑐𝑒−|𝑥| is integrable on 𝑅 for every 𝑐 < 1, the integral 

𝐼[𝑓] converges absolutely.  

3. Tools: Fourier Transform of 𝒔𝒆𝒄𝒉𝒙 and a Fourier Representation for Rational 

Factors 

We collect two classical transform identities that will be used repeatedly. 

Lemma 3.1 (Fourier transform of $x$) For all real 𝜔,  

 ∫
𝑒𝑖𝜔𝑥

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 = 𝜋𝑠𝑒𝑐ℎ ⥂ (

𝜋𝜔

2
). 

In particular,  

 ∫
𝑐𝑜𝑠(𝜔𝑥)

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 = 𝜋𝑠𝑒𝑐ℎ ⥂ (

𝜋𝜔

2
). 

Proof. This is a classical Fourier-transform pair. A proof by contour integration evaluates ∫ 𝑒𝑖𝜔𝑧
∞

−∞
/ 𝑐𝑜𝑠ℎ 𝑧 𝑑𝑧 over 

a rectangle of height 𝜋 and lets the horizontal sides tend to infinity; only the simple pole at 𝑧 = 𝑖𝜋/2 contributes. 

See, for example, [2, Â§3.982] or [3, Vol.~I, Ch.~III].  

Lemma 3.2 (Fourier representation of $(1+a x^2)^-1$) Let 𝑎 > 0. Then for all 𝑥 ∈ 𝑅,  

 
1

1+𝑎𝑥2
=

1

2√𝑎
∫ 𝑒−|𝑠|/√𝑎𝑒𝑖𝑠𝑥
∞

−∞
𝑑𝑠. 

Equivalently, the Fourier transform of (1 + 𝑎𝑥2)−1 is 𝜋𝑒−|𝑠|/√𝑎/√𝑎.  

Proof. This follows from the standard identity  

 ∫ 𝑒−|𝑠|/√𝑎𝑒−𝑖𝑠𝑥
∞

−∞
𝑑𝑠 =

2√𝑎

1+𝑎𝑥2
, 

which may be obtained by elementary integration or from Fourier transform tables (see [2, Â§3.954]). Dividing both 

sides by 2√𝑎 yields the stated representation.  
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The logarithmic integral: dxxx cosh)/(1ln 2+  

Theorem 3.3  

 ∫
𝑙𝑛(1+𝑥2)

𝑐𝑜𝑠ℎ 𝑥
𝑑𝑥

∞

−∞
= 𝜋 𝑙𝑛 2. 

We present two independent proofs: a transform-based argument and a contour-integral approach. 

Proof (A): transform method and differentiation under the integral sign 

For 𝑎 > 0, define  

 𝐽(𝑎) = ∫
𝑙𝑛(1+𝑎𝑥2)

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥. 

By Lemma 2.3, differentiation under the integral sign is justified and yields  

 𝐽′(𝑎) = ∫
𝑥2

(1+𝑎𝑥2) 𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥. 

Using  

 
𝑥2

1+𝑎𝑥2
=

1

𝑎
(1 −

1

1+𝑎𝑥2
), 

we obtain  

 𝐽′(𝑎) =
1

𝑎
(∫

𝑑𝑥

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
− ∫

𝑑𝑥

(1+𝑎𝑥2) 𝑐𝑜𝑠ℎ 𝑥

∞

−∞
). 

Since ∫ 𝑠𝑒𝑐ℎ𝑥𝑑𝑥
∞

−∞
= 𝜋, it remains to evaluate the second integral. 

By Lemma 3.2 and Fubini’s theorem,  

 ∫
𝑑𝑥

(1+𝑎𝑥2) 𝑐𝑜𝑠ℎ 𝑥

∞

−∞
=

1

2√𝑎
∫ 𝑒−|𝑠|/√𝑎
∞

−∞
(∫

𝑒𝑖𝑠𝑥

𝑐𝑜𝑠ℎ 𝑥
𝑑𝑥

∞

−∞
) 𝑑𝑠. 

Applying Lemma 3.1,  

 ∫
𝑑𝑥

(1+𝑎𝑥2) 𝑐𝑜𝑠ℎ 𝑥

∞

−∞
=

𝜋

2√𝑎
∫ 𝑒−|𝑠|/√𝑎
∞

−∞
𝑠𝑒𝑐ℎ ⥂ (

𝜋𝑠

2
) 𝑑𝑠 =

𝜋

√𝑎
∫ 𝑒−𝑠/√𝑎𝑠𝑒𝑐ℎ
∞

0
⥂ (

𝜋𝑠

2
) 𝑑𝑠. 

Hence  

 𝐽′(𝑎) =
𝜋

𝑎
(1 −

1

√𝑎
∫ 𝑒−𝑠/√𝑎𝑠𝑒𝑐ℎ
∞

0
⥂ (

𝜋𝑠

2
) 𝑑𝑠). 

We now use a classical Laplace transform identity. 

Lemma 3.4 If ℜ𝜇 > |ℜ𝜈|, then  

 ∫ 𝑒−𝜇𝑠
∞

0
𝑠𝑒𝑐ℎ(𝜈𝑠)𝑑𝑠 =

1

2𝜈
⥂ [𝜓 ⥂ (

𝜇

2𝜈
+

1

4
) − 𝜓 ⥂ (

𝜇

2𝜈
+

3

4
)], 

where 𝜓 denotes the digamma function.  

Proof. This formula is classical and may be found, for example, in [3, Vol.~I, Â§1.9] or derived using Mellin 

transforms and the identity 𝑠𝑒𝑐ℎ𝑥 = 2/(𝑒𝑥 + 𝑒−𝑥) together with Beta-function representations.  

Applying Lemma 3.4 with 𝜇 = 1/√𝑎 and 𝜈 = 𝜋/2, we obtain  

 ∫ 𝑒−𝑠/√𝑎
∞

0
𝑠𝑒𝑐ℎ ⥂ (

𝜋𝑠

2
) 𝑑𝑠 =

1

𝜋
⥂ [𝜓 ⥂ (

1

𝜋√𝑎
+

1

4
) − 𝜓 ⥂ (

1

𝜋√𝑎
+

3

4
)]. 
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Therefore  

 𝐽′(𝑎) =
𝜋

𝑎
[1 −

1

𝜋√𝑎
(𝜓 ⥂ (

1

𝜋√𝑎
+

1

4
) − 𝜓 ⥂ (

1

𝜋√𝑎
+

3

4
))]. 

Since 𝐽(0) = 0 and the integrand has a finite limit as 𝑎 → 0+, we integrate from 0 to 1. Using the substitution 𝑡 =

1/(𝜋√𝑎) and standard digamma identities 𝜓(𝑧 + 1) − 𝜓(𝑧) = 1/𝑧 together with duplication formulas (see [4]), a direct 

computation yields  

 𝐽(1) = 𝜋 𝑙𝑛 2. 

This proves the theorem.  

Proof (B): contour integral 

Let 𝐹(𝑧) = 𝑙𝑛( 1 + 𝑎𝑧2)/ 𝑐𝑜𝑠ℎ 𝑧 with branch cuts from 𝑧 = ±𝑖/√𝑎 extending vertically. Integrating 𝐹 over a rectangle 

of height 𝜋 in the upper half-plane and summing residues at the simple poles of 𝑠𝑒𝑐ℎ𝑧 located at 𝑧 = 𝑖𝜋(𝑘 + 1/2), 

one obtains an expression equivalent to the transform evaluation above. The logarithmic branch contributes 

cancellation terms which ultimately yield the same value 𝐽(1) = 𝜋 𝑙𝑛 2. Since this argument is longer and technically 

routine, we omit the details.  

4. Power Family: Integrals of (𝟏 + 𝒙𝟐)−𝜶 

For 𝛼 > 0 we define  

 𝐼(𝛼) = ∫
𝑑𝑥

(1+𝑥2)𝛼 𝑐𝑜𝑠ℎ 𝑥

∞

−∞
= ∫ (1 + 𝑥2)−𝛼𝑠

∞

−∞
𝑒𝑐ℎ𝑥𝑑𝑥. 

Proposition 4.1 (Fourier--Bessel representation) For ℜ𝛼 >
1

2
,  

 𝐼(𝛼) =
1

2𝜋
∫ (1 + 𝑥2)−𝛼


∞

−∞
(𝜔)𝑠𝑒𝑐ℎ𝑥



(−𝜔)𝑑𝜔, 

where the Fourier transform is defined by  

 ℎ


(𝜔) = ∫ ℎ(𝑥)𝑒𝑖𝜔𝑥
∞

−∞
𝑑𝑥. 

Moreover,  

 𝑠𝑒𝑐ℎ𝑥


(𝜔) = 𝜋𝑠𝑒𝑐ℎ ⥂ (
𝜋𝜔

2
)   (Lemma 3.1), 

and, for ℜ𝛼 >
1

2
,  

 (1 + 𝑥2)−𝛼


(𝜔) =
√𝜋2

3
2−𝛼

Γ(𝛼)
|𝜔|𝛼−

1

2𝐾
𝛼−

1

2

(|𝜔|), 

where 𝐾𝜈 denotes the modified Bessel function of the second kind. Consequently,  

 𝐼(𝛼) =
√𝜋2

3
2−𝛼

Γ(𝛼)
∫ 𝜔𝛼−

1

2𝐾
𝛼−

1

2

∞

0
(𝜔)𝑠𝑒𝑐ℎ ⥂ (

𝜋𝜔

2
) 𝑑𝜔. 

Proof. For ℜ𝛼 >
1

2
 one has (1 + 𝑥2)−𝛼 ∈ 𝐿2(𝑅), and clearly 𝑠𝑒𝑐ℎ𝑥 ∈ 𝐿2(𝑅). Parseval’s identity for the above Fourier 

convention therefore yields  

 ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
∞

−∞
=

1

2𝜋
∫ 𝑓



(𝜔)𝑔
∞

−∞
(−𝜔)𝑑𝜔. 
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Applying this with 𝑓(𝑥) = (1 + 𝑥2)−𝛼 and 𝑔(𝑥) = 𝑠𝑒𝑐ℎ𝑥 gives the first identity. The expression for 𝑠𝑒𝑐ℎ𝑥


 follows 

from Lemma 3.1, while the Fourier transform of (1 + 𝑥2)−𝛼 in terms of the Bessel function 𝐾𝛼−1/2 is classical (see, for 

example, [2, 4]). Finally, since the integrand is even in 𝜔, the integral may be written over (0,∞).  

Corollary 4.2 (The case $=1$) 

 𝐼(1) = ∫
𝑑𝑥

(1+𝑥2) 𝑐𝑜𝑠ℎ 𝑥

∞

−∞
= 𝜋 ∫ 𝑒−𝜔

∞

0
𝑠𝑒𝑐ℎ ⥂ (

𝜋𝜔

2
) 𝑑𝜔. 

Proof. For 𝛼 = 1 the standard Fourier transform identity  

 
1

1+𝑥2



(𝜔) = 𝜋𝑒−|𝜔| 

holds. Substituting this into Parseval’s identity in Proposition 4.1, together with 𝑠𝑒𝑐ℎ𝑥


(𝜔) = 𝜋𝑠𝑒𝑐ℎ(𝜋𝜔/2), and using 

evenness in 𝜔 yields the result.  

5. Trigonometric Dependence on the Logarithm 

We consider 𝑓(𝑢) = 𝑐𝑜𝑠( 𝛽𝑢) and 𝑓(𝑢) = 𝑠𝑖𝑛( 𝛽𝑢) with 𝛽 ∈ R. 

Theorem 5.1 For every real 𝛽,  

 ∫
𝑐𝑜𝑠(𝛽 𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 = 𝜋𝑠𝑒𝑐ℎ ⥂ (

𝜋𝛽

2
). 

Proof idea (transform method). Write  

 𝑐𝑜𝑠( 𝛽 𝑙𝑛( 1 + 𝑥2)) = ℜ((1 + 𝑥2)𝑖𝛽). 

One then evaluates  

 ∫
(1+𝑥2)𝑖𝛽

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 

by expressing (1 + 𝑥2)𝑖𝛽 through a Mellin–Barnes / Mellin-type representation and combining it with the Fourier 

transform of 𝑠𝑒𝑐ℎ𝑥 from Lemma 3.1. Carrying out the resulting transform integral and using analytic continuation 

in 𝛽 yields the closed form 𝜋𝑠𝑒𝑐ℎ(𝜋𝛽/2), which is real-valued; taking real parts gives the claim. Details follow standard 

Mellin-transform arguments; see [3, 4].  

Corollary 5.2  

 ∫
𝑠𝑖𝑛(𝛽 𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 = 0  (𝛽 ∈ R). 

Proof. From the proof of Theorem 5.1, the complex integral dxsechxx i)(1 2+  evaluates to the real quantity 

𝜋𝑠𝑒𝑐ℎ(𝜋𝛽/2). Therefore its imaginary part vanishes, which is precisely the stated sine integral.  

6. Asymptotic Expansions and Parameter Analysis 

We study 𝐼(𝛼) as 𝛼 → ∞. 

Proposition 6.1 (Large-$$ asymptotics) As 𝛼 → ∞,  

 𝐼(𝛼) = √
𝜋

𝛼
+

√𝜋

8𝛼3/2
+ 𝑂(𝛼−5/2). 
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Proof. For large 𝛼, the main contribution comes from a neighborhood of 𝑥 = 0. Use the Taylor expansions  

 𝑙𝑛( 1 + 𝑥2) = 𝑥2 −
𝑥4

2
+ 𝑂(𝑥6),   𝑠𝑒𝑐ℎ𝑥 = 1 −

𝑥2

2
+ 𝑂(𝑥4),   (𝑥 → 0). 

Write (1 + 𝑥2)−𝛼 = 𝑒−𝛼 𝑙𝑛(1+𝑥2) and scale 𝑥 = 𝑦/√𝛼. Then  

 (1 + 𝑥2)−𝛼𝑠𝑒𝑐ℎ𝑥 = 𝑒−𝑦
2
(1 +

𝑦4−𝑦2

2𝛼
+ 𝑂(𝛼−2)) ,   𝑑𝑥 =

𝑑𝑦

√𝛼
. 

Integrating termwise gives  

 𝐼(𝛼) =
1

√𝛼
∫ 𝑒−𝑦

2∞

−∞
𝑑𝑦 +

1

2𝛼3/2
∫ (𝑦4 − 𝑦2)𝑒−𝑦

2∞

−∞
𝑑𝑦 + 𝑂(𝛼−5/2). 

Using the Gaussian moments =
2

dye y−

 , /2=
22 dyey y−

 , /43=
24 dyey y−

 , we obtain  

 𝐼(𝛼) = √
𝜋

𝛼
+

√𝜋

8𝛼3/2
+ 𝑂(𝛼−5/2), 

as claimed.  

7. Open Problems and Generalizations 

We conclude by listing several natural extensions and open questions suggested by the present work. 

[leftmargin=*] 

1. Non-even kernels and nonlinear functions of the logarithm. For even kernels such as 𝑠𝑒𝑐ℎ𝑥, we have 

shown that  

 ∫
𝑠𝑖𝑛(𝛽 𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 = 0  (𝛽 ∈ R), 

since the corresponding complex integral is real-valued. It would be interesting to study analogous logarithmic 

oscillatory integrals when the hyperbolic kernel is replaced by a non-even or non-self-dual function, or when 𝑓 is a 

nonlinear function of 𝑙𝑛( 1 + 𝑥2) such as 𝑓(𝑢) = 𝑡𝑎𝑛ℎ 𝑢 or 𝑓(𝑢) = 𝑢 𝑠𝑖𝑛 𝑢, for which symmetry arguments no longer 

apply and closed forms are unknown. 

2. Parameterized hyperbolic and exponential kernels. A natural extension is to replace the kernel 𝑠𝑒𝑐ℎ𝑥 by 

𝑠𝑒𝑐ℎ(𝜆𝑥) or by 𝑒−𝜆 𝑐𝑜𝑠ℎ 𝑥 with 𝜆 > 0, and to study how closed-form evaluations and asymptotic behavior depend on 

the parameter 𝜆. In these cases the Fourier transform of the kernel is still explicitly known or expressible in terms 

of special functions, suggesting that transform methods may remain applicable. 

3. Higher-dimensional analogues. One may define, for 𝑛 ≥ 1,  

 𝐼𝑛[𝑓] = ∫
𝑓(𝑙𝑛(1+P𝑥P2))

𝑐𝑜𝑠ℎ P𝑥PR𝑛
𝑑𝑛𝑥. 

By radial symmetry this reduces to a one-dimensional integral with an additional power of the radius, involving 

the surface measure |𝑆𝑛−1|. It would be of interest to determine for which classes of functions 𝑓 such integrals admit 

closed forms and how the dimension 𝑛 influences the analytic structure. 

4. Connections with special functions and arithmetic structures. For specific choices of 𝑓, especially 

involving trigonometric or exponential functions of 𝑙𝑛( 1 + 𝑥2), the resulting integrals may admit representations in 

terms of special functions or constants with arithmetic significance. It is an open question whether certain cases 

can be related to special values of 𝐿 -functions, modular forms, or spectral expansions associated with hyperbolic 

kernels. 
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8. Numerical Verification and Plots 

To illustrate the validity of the theoretical results, we present numerical evaluations for three representative 

cases studied in the paper: 

[leftmargin=*]  

1. 𝐼1 = ∫
𝑙𝑛(1+𝑥2)

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 = 𝜋 𝑙𝑛 2 ≈ 2.1775860903. 

2. 𝐼(1) = ∫
𝑑𝑥

(1+𝑥2) 𝑐𝑜𝑠ℎ 𝑥
,

∞

−∞
 

whose value is given by the integral representation in Corollary 4.2. 

3. 𝐶(𝛽) = ∫
𝑐𝑜𝑠(𝛽 𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

∞

−∞
𝑑𝑥 = 𝜋𝑠𝑒𝑐ℎ ⥂ (

𝜋𝛽

2
), 

in particular 𝐶(1) = 𝜋𝑠𝑒𝑐ℎ(𝜋/2) ≈ 1.2817169472.  

In all cases, numerical quadrature was performed on the truncated interval [−6,6] using high-precision adaptive 

integration (Simpson and Clenshaw–Curtis rules). Since all integrands decay exponentially, the truncation error is 

negligible at the displayed precision. 

Figs. (1-3) display the corresponding integrands. 

 

Figure 1: Integrand 𝑙𝑛( 1 + 𝑥2)/ 𝑐𝑜𝑠ℎ 𝑥 on [−6,6]. The truncated numerical value is ∫
𝑙𝑛(1+𝑥2)

𝑐𝑜𝑠ℎ 𝑥

6

−6
𝑑𝑥 ≈ 2.1775859, which agrees with 

the exact value 𝜋 𝑙𝑛 2 ≈ 2.1775860903. 

 

Figure 2: Integrand 1/((1 + 𝑥2) 𝑐𝑜𝑠ℎ 𝑥) on [−6,6]. The numerical integral on [−6,6] is ∫
𝑑𝑥

(1+𝑥2) 𝑐𝑜𝑠ℎ 𝑥

6

−6
≈ 0.64085847, consistent with 

the value obtained from Corollary 4.2. 
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Figure 3: Integrand 𝑐𝑜𝑠( 𝑙𝑛( 1 + 𝑥2))/ 𝑐𝑜𝑠ℎ 𝑥 on [−6,6]. The truncated integral gives ∫
𝑐𝑜𝑠( 𝑙𝑛(1+𝑥2))

𝑐𝑜𝑠ℎ 𝑥

6

−6
𝑑𝑥 ≈ 1.2817169, in agreement 

with the theoretical value 𝜋𝑠𝑒𝑐ℎ(𝜋/2) ≈ 1.2817169472. 

9. Concluding Remarks 

In this paper we introduced and analyzed a new class of definite integrals combining logarithmic compositions 

with hyperbolic kernels. For several families of functions 𝑓, including logarithmic, power-type, and trigonometric 

dependences on 𝑙𝑛( 1 + 𝑥2), we obtained explicit evaluations and representations, supported by complete proofs 

based on both residue calculus and transform methods (Fourier and Mellin techniques). We also derived asymptotic 

expansions for parameter-dependent cases and provided numerical experiments illustrating the accuracy of the 

closed-form results. 

The class of integrals considered here admits numerous natural extensions, some of which were outlined in the 

preceding section. We hope that the present framework may serve as a starting point for further investigations 

involving other kernels, higher-dimensional analogues, and potential connections with special functions and 

analytic number theory. 
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