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ABSTRACT 

This paper investigates the inversion of Dirichlet series, and its applications to 

the distribution of prime numbers. Several techniques will be developed for 

inversion using integral kernels, conformal mappings, and asymptotic 

approximations as arguments approach infinity. These methods are applied 

to key arithmetic functions, including the prime characteristic function, and 

prime pair counting function. This paper also analyzes prime gaps, prime k-

tuples, and divisor functions, providing asymptotic results and error estimates 

under the Riemann Hypothesis. The presented techniques are generalizable, 

offering new insights into prime number behavior and related functions. 
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1. Introduction  

The study of prime numbers and their distribution is a central problem in analytic number theory. Dirichlet 

series, introduced by J.P.G.L. Dirichlet, have played a fundamental role in this field due to their deep connections 

with arithmetic functions and prime number properties. These series provide essential tools for understanding the 

structure of prime numbers, solving problems in number theory, and analyzing phenomena such as prime gaps, 

prime pairs, and divisor functions. 

The connection between Dirichlet series and prime numbers was first explored through Euler’s product formula 

for the Riemann zeta function. Later, Riemann extended this work by linking the zeros of the zeta function to the 

distribution of primes, leading to the formulation of the celebrated Riemann Hypothesis. Since then, inversion 

techniques for Dirichlet series have been pivotal in deriving results related to prime counting functions, prime gaps, 

and other arithmetic functions. 

This paper, systematically investigates methods for inverting Dirichlet series and their asymptotic 

approximations as the arguments approach infinity. Starting by presenting inversion techniques, including classical 

methods using integral kernels and advanced methods utilizing conformal mappings. These techniques enable us 

to approximate the Dirichlet series inversions asymptotically and derive key results in prime number theory. 

Using these methods, several applications will be analyzed: 

• Prime Characteristic Function: A function that determines whether a number is prime.  

• Prime Pair Counting Function: Counting pairs of primes with a fixed gap.  

• Prime k-Tuple Function: Generalizing prime pairs to sequences of primes with fixed gaps.  

• Prime Gaps and Factor-Counting Functions: Understanding the behavior of gaps between consecutive primes 

and the number of divisors or prime factors of natural numbers.  

• Further asymptotic approximations will be provided for these functions, leveraging the average order 

theorem and analyzing their behavior under the assumption of the Riemann Hypothesis.  

• Additionally, the errors will be evaluated in these approximations and demonstrate their precision.  

The results presented here not only enhance our understanding of the distribution of prime numbers but also 

illustrate the versatility of inversion techniques in solving problems involving arithmetic and analytic functions. 

These methods can be extended to other classes of series and integral transforms, offering a broader scope for 

future research. 

This paper is organized as follows. In Section 2, techniques for inverting Dirichlet series using integral kernels 

and conformal mappings will be used. Section 3 focuses on asymptotic approximations of these inversions. In 

Section 4, various applications are explored to prime number theory, including prime counting functions, prime 

gaps, and related arithmetic functions. Section 5 provides error estimates for the derived approximations. Finally, a 

summary of results and possible directions for future research is concluded. 

2. Techniques for Inverting the Dirichlet Series 

In this section, systematic methods for inverting Dirichlet series are presented, which are central to analytic 

number theory. The inversion of these series allows us to recover the underlying arithmetic function 𝑓(𝑛) from its 

associated Dirichlet series 𝐷(𝑓, 𝑠), defined as:  

 𝐷(𝑓, 𝑠) = ∑
𝑓(𝑛)

𝑛𝑠 ,∞
𝑛=1  where𝑠 ∈ C. (2.0.1) 

The inversion problem plays a crucial role in deriving properties of arithmetic functions, particularly those 

connected to the distribution of prime numbers. It begins by introducing integral kernels, which provide a direct 
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approach to inversion, followed by more advanced techniques involving conformal mappings and asymptotic 

approximations.  

2.1. Classical Inversion of the Dirichlet Series 

The classical inversion of the Dirichlet series is a cornerstone result in analytic number theory. Given a Dirichlet 

series of the form  

 𝐷(𝑓, 𝑠) = ∑
𝑓(𝑛)

𝑛𝑠 , ∞
𝑛=1 ℜ(𝑠) > 𝜎0, (2.1.1) 

where 𝑓(𝑛) is an arithmetic function and 𝜎0 is the abscissa of convergence [9], the goal of the inversion is to recover 

𝑓(𝑘) for any natural number 𝑘. 

The classical inversion formula, derived using the Mellin transform, is given by the limit: 

 
dtitfDk

T
kf it

T

TT

),(
2

1
lim=)( ++

−→
 

 (2.1.2) 

This is actually, a special case of Mellin inversion, or more generally, a special case of Fourier inversion. Using a 

simple change of variables in equation 2.1.2 takes the following form:  

 
.),(

2

1
lim=)( dssfDk

iT
kf s

iT

iTT


+

−→




 (2.1.3) 

Where 𝑘 ∈ 𝑁 and 𝜎 > 𝜎0 with 𝜎0 the abscissa of convergence of the Dirichlet series 𝐷(𝑓, 𝑠). For a proof of these 

results, the reader can go to the book [3].  

An alternative approach to invert the Dirichlet series involves expressing the solution as a bounded summation, 

which can be represented in integral form as follows:  

 𝐹(𝑘) = ∑ 𝑓(𝑛)1≤𝑛≤𝑘 = ∫
𝑘𝑠

𝑠
𝐷(𝑓, 𝑠)

𝜎+𝑖∞

𝜎−𝑖∞

𝑑𝑠

2𝜋𝑖
. (2.1.4) 

According to the books [3] and [5] the arithmetic function 𝑓(𝑘) is obtained by the difference:  

 𝑓(𝑘) = 𝐹(𝑘) − 𝐹(𝑘 − 1), (2.1.5) 

With the difference above and equation 2.1.4 the integral below is obtained:  

 𝑓(𝑘) = ∫
𝑘𝑠−(𝑘−1)𝑠

𝑠

𝜎+𝑖∞

𝜎−𝑖∞
𝐷(𝑓, 𝑠)

𝑑𝑠

2𝜋𝑖
. (2.1.6) 

2.2. Inversion Using Integral Kernels 

Integral kernels provide a powerful method for inverting Dirichlet series, offering an alternative to the classical 

inversion formula. This approach leverages the idea of constructing a kernel function 𝐾(𝑘, 𝑠) that allows the Dirichlet 

series to be expressed in an integral form, facilitating the recovery of the arithmetic function 𝑓(𝑘) from its Dirichlet 

series 𝐷(𝑓, 𝑠). 

The general form of the inversion formula using integral kernels is given by:  

 𝑓(𝑘) =
1

2𝜋𝑖
∫ 𝐾(𝑘, 𝑠)𝐷(𝑓, 𝑠)𝑑𝑠,

𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.1) 

where 𝐾(𝑘, 𝑠) is the integral kernel and 𝐷(𝑓, 𝑠) is the Dirichlet series of 𝑓(𝑛). This method not only provides a direct 

method of inversion but also gives insight into the asymptotic behavior of the arithmetic function 𝑓(𝑘) as 𝑘 → ∞. 
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In the following, several specific forms of 𝐾(𝑘, 𝑠) and their applications will be explored in analytic number theory 

will be derived. An example of an integral kernel is given by the following expression: 

 𝐾(𝑘, 𝑠) =
𝑘𝑠−(𝑘−1)𝑠

𝑠
, (2.2.2) 

which it is used for the asymptotic inversion of the Dirichlet series. The equation 2.2.2 can alternatively be 

represented by the contour integral: 

 𝐾(𝑘, 𝑠) =
1

𝑠
∮

𝑧𝑠

(𝑧−𝑘)(𝑧−𝑘+1)

𝑑𝑧

2𝜋𝑖
.

𝐶
 (2.2.3) 

Here, 𝐶 is a closed contour that encircles the poles at 𝑧 = 𝑘 and 𝑧 = 𝑘 − 1, ensuring that the logarithm of 𝑧𝑠 can 

be properly defined, which leads to a branch cut integral. From 2.2.3, the following operator �̂� is derived: 

 �̂�𝐹(𝑘) = ∑
(−1)𝑛+1

𝑛!

𝑑𝑛𝐹(𝑧)

𝑑𝑧𝑛 |𝑧=𝑘.∞
𝑛=1  (2.2.4) 

This expression combines elements of the Cauchy integral formula and the geometric series. The constraint here 

is that the function 𝐹(𝑧) must be smooth, meaning 𝐹(𝑧) ∈ 𝐶∞. To handle discontinuities, if 𝐹(𝑘) can be expressed as 

𝐹(⌊𝑥⌋) where 𝑥 ∈ 𝑅, the floor function can be eliminated, allowing the function to be extended to the real numbers 

via the inclusion map 𝐹(𝑖(⌊𝑥⌋)) = 𝐹(𝑥), after which the operator can be applied. 

For the specific case 𝐹(𝑧) = 𝑧𝑠, the kernel 𝐾(𝑘, 𝑠) takes the form: 

 𝐾(𝑘, 𝑠) =
1

𝑠
∑

(−1)𝑛+1

𝑛!

𝛤(𝑠+1)𝑘𝑠−𝑛

𝛤(𝑠+1−𝑛)
.∞

𝑛=1  (2.2.5) 

The above equation can be derived from equation 2.2.2 by applying the binomial theorem. 

Next, the properties of the Dirac delta function is used to construct additional integral kernels. The Dirac delta 

function is defined by the following integral: 

 𝛿(𝑥 − 𝑎) = ∫
𝑥𝑠−1

𝑎𝑠

𝑑𝑠

2𝜋𝑖
.

𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.6) 

Using this definition, the following equation can be expressed: 

 𝑓(𝑥) ∑ 𝛿(𝑥 − 𝑛)∞
𝑛=1 =

1

2𝜋𝑖
∫ 𝑥𝑠−1𝐷(𝑓, 𝑠)𝑑𝑠.

𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.7) 

To recover 𝑓(𝑘), the series is converted as follows: 

 ∑ 𝑓(𝑛)𝛿(𝑥 − 𝑛)∞
𝑛=1 → ∑ 𝑓(𝑛)sinc(𝑘 − 𝑛) = 𝑓(𝑘).∞

𝑛=1  (2.2.8) 

Here, sinc(𝑥) =
𝑠𝑖𝑛(𝜋𝑥)

𝜋𝑥
 denotes the normalized sine function. 

To proceed, the following convolution is being applied: 

 𝑓(𝑘) = ∫ sinc(𝑘 − 𝑥)
∞

0
∑ 𝑓(𝑛)𝛿(𝑥 − 𝑛)𝑑𝑥,∞

𝑛=1  (2.2.9) 

or equivalently: 

 𝑓(𝑘) = ∫ sinc(𝑘 − 𝑥)
1

2𝜋𝑖

∞

0
∫ 𝑥𝑠−1𝐷(𝑓, 𝑠)𝑑𝑠𝑑𝑥.

𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.10) 

By changing the order of integration, the following integral kernel is obtained: 

 𝐾(𝑘, 𝑠) = ∫ sinc(𝑘 − 𝑥)𝑥𝑠−1𝑑𝑥.
∞

0
 (2.2.11) 
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Using a similar approach with some modifications, we derive a comparable integral kernel: 

 𝐾(𝑘, 𝑠) = ∫ sinc(𝑥)(𝑘 − 𝑥)𝑠−1𝑑𝑥.
∞

−∞
 (2.2.12) 

This kernel will be used in subsequent approximations. 

Another approach for constructing integral kernels is to convert Dirichlet series into a different form of series. 

Using the same techniques as before, the following integral kernels are obtained: 

 ∑ 𝑓(𝑛)𝑒−𝑖𝑛𝜃∞
𝑛=1 = ∫ 𝑒−𝑖𝑥𝜃 1

2𝜋𝑖

∞

0
∫ 𝑥𝑠−1𝐷(𝑓, 𝑠)𝑑𝑠𝑑𝑥.

𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.13) 

Changing the order of integration and evaluating this integral using standard techniques [10], we obtain: 

 ∫ 𝑒−𝑖𝑥𝜃𝑥𝑠−1𝑑𝑥 =
𝛤(𝑠)

(𝑖𝜃)𝑠 .
∞

0
 (2.2.14) 

Thus, we have the following expression: 

 ∑ 𝑓(𝑛)𝑒−𝑖𝑛𝜃∞
𝑛=1 =

1

2𝜋𝑖
∫

𝛤(𝑠)

(𝑖𝜃)𝑠 𝐷(𝑓, 𝑠)𝑑𝑠
𝜎+𝑖∞

𝜎−𝑖∞
. (2.2.15) 

By separating the Fourier series into sine and cosine components, we obtain the following expressions: 

 ∑ 𝑓(𝑛) 𝑐𝑜𝑠( 𝑛𝜃)∞
𝑛=1 = ∫ 𝑐𝑜𝑠( 𝜃𝑥)

∞

0

1

2𝜋𝑖
∫ 𝑥𝑠−1𝐷(𝑓, 𝑠)𝑑𝑠𝑑𝑥,

𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.16) 

 ∑ 𝑓(𝑛) 𝑠𝑖𝑛( 𝑛𝜃)∞
𝑛=1 = ∫ 𝑠𝑖𝑛( 𝜃𝑥)

∞

0

1

2𝜋𝑖
∫ 𝑥𝑠−1𝐷(𝑓, 𝑠)𝑑𝑠𝑑𝑥.

𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.17) 

By changing the order of integration and using standard results from the theory of integral transforms [10], we 

find the following identities: 

 ∫ 𝑐𝑜𝑠( 𝜃𝑥)𝑥𝑠−1∞

0
𝑑𝑥 =

𝛤(𝑠)

𝜃𝑠 𝑐𝑜𝑠 (
𝜋𝑠

2
), (2.2.18) 

 ∑ 𝑓(𝑛) 𝑐𝑜𝑠( 𝑛𝜃)∞
𝑛=1 =

1

2𝜋𝑖
∫

𝛤(𝑠)

𝜃𝑠 𝑐𝑜𝑠 (
𝜋𝑠

2
)

𝜎+𝑖∞

𝜎−𝑖∞
𝐷(𝑓, 𝑠)𝑑𝑠. (2.2.19) 

 ∫ 𝑠𝑖𝑛( 𝜃𝑥)𝑥𝑠−1𝑑𝑥
∞

0
=

𝛤(𝑠)

𝜃𝑠 𝑠𝑖𝑛 (
𝜋𝑠

2
), (2.2.20) 

 ∑ 𝑓(𝑛) 𝑠𝑖𝑛( 𝑛𝜃)∞
𝑛=1 =

1

2𝜋𝑖
∫

𝛤(𝑠)

𝜃𝑠 𝑠𝑖𝑛 (
𝜋𝑠

2
)

𝜎+𝑖∞

𝜎−𝑖∞
𝐷(𝑓, 𝑠)𝑑𝑠. (2.2.21) 

Finally, by applying Fourier inversion to the series above, we obtain the following integral kernels: 

 𝐾(𝑘, 𝑠) = ∫ 𝑒𝑖𝑘𝜃 𝛤(𝑠)

(𝑖𝜃)𝑠

𝑑𝜃

2𝜋
,

𝜋

−𝜋
 ℜ(𝑠) > 0, (2.2.22) 

 𝐾(𝑘, 𝑠) = ∫ 𝑐𝑜𝑠( 𝑘𝜃)
𝜋

−𝜋

𝛤(𝑠)

𝜃𝑠 𝑐𝑜𝑠 (
𝜋𝑠

2
)

𝑑𝜃

2𝜋
,  ℜ(𝑠) > 0, (2.2.23) 

and 

 𝐾(𝑘, 𝑠) = ∫ 𝑠𝑖𝑛( 𝑘𝜃)
𝜋

−𝜋

𝛤(𝑠)

𝜃𝑠 𝑠𝑖𝑛 (
𝜋𝑠

2
)

𝑑𝜃

2𝜋
,  ℜ(𝑠) > 0. (2.2.24) 

In a similar manner, we can obtain the Laurent series representation: 

 ∑ 𝑓(𝑛)𝑧−𝑛∞
𝑛=1 = ∫ 𝑧−𝑥 1

2𝜋𝑖

∞

0
∫ 𝑥𝑠−1𝐷

𝜎+𝑖∞

𝜎−𝑖∞
(𝑓, 𝑠)𝑑𝑠𝑑𝑥. (2.2.25) 

By changing the order of integration, we deduce: 
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 ∫ 𝑒−𝑥 𝑙𝑜𝑔(𝑧)𝑥𝑠−1𝑑𝑥
∞

0
=

𝛤(𝑠)

(𝑙𝑜𝑔(𝑧))𝑠. (2.2.26) 

Thus, we arrive at the final expression: 

 ∑ 𝑓(𝑛)𝑧−𝑛∞
𝑛=1 =

1

2𝜋𝑖
∫

𝛤(𝑠)

(𝑙𝑜𝑔(𝑧))𝑠 𝐷(𝑓, 𝑠)𝑑𝑠.
𝜎+𝑖∞

𝜎−𝑖∞
 (2.2.27) 

By applying Cauchy’s integral formula, we obtain the kernel: 

 𝐾(𝑘, 𝑠) =
1

2𝜋𝑖
∮ 𝑧𝑘−1 𝛤(𝑠)

(𝑙𝑜𝑔(𝑧))𝑠 𝑑𝑧.
𝐶

 (2.2.28) 

where 𝐶 is a closed contour, such that the integrated function is well-defined on the complex plane. 

For all the kernels discussed here, the variable 𝑘 must be a natural number, i.e., 𝑘 ∈ 𝑁.  

2.3. Inverting the Series Using Conformal Mapping 

An alternative technique for inverting the Dirichlet series involves the use of conformal mapping. Consider the 

integral representation for the inversion of a Dirichlet series: 

 
,),(

4

1
lim=)(

2

2
dssfDk

iT
kf s

iT

iTT


+

−→



  (2.3.1) 

where 𝜎 > 𝜎0, and 𝜎0 is the abscissa of convergence of the Dirichlet series 𝐷(𝑓, 𝑠). In this formulation, we introduce 

a change of variables by replacing 𝑇 with 2𝜋𝑇 for convenience. 

To simplify the evaluation, we divide the integral into segments of height 2𝜋𝑖, effectively splitting the contour into 

horizontal strips. This yields: 

 

.),(
4

1
lim=),(

4

1
lim

1)(2

2

1

=

2

2
dssfDk

iT
dssfDk

iT

s
ni

in

T

TnT

s
iT

iTT


++

+

−

−→

+

−→







   (2.3.2) 

At this stage, we employ a conformal mapping via the exponential function 𝑒𝑥𝑝( 𝑠) = 𝑒𝑠, which maps the complex 

plane 𝐶 as follows: 

𝑒𝑥𝑝: 𝐶 → (0, +∞) × 𝑅/2𝜋𝑍. 

The inverse of this mapping is the logarithmic function 𝑙𝑜𝑔( 𝑠), where the real axis of 𝐶 maps onto a spiral-like 

surface with periodicity 2𝜋 in the imaginary direction. Explicitly, 𝑅/2𝜋𝑍 denotes the angle periodicity in the 

exponential mapping, where 2𝜋𝑍 = {2𝜋𝑚: 𝑚 ∈ 𝑍}. 

Using this transformation, the integral can be expressed on the exponential contour |𝑧| = 𝑒𝜎 as follows: 

 

.))(log,(
4

1
lim

)(log

|=|

1

=

dzzfD
z

k

iT

z

ez

T

TnT


−

−→


  (2.3.3) 

Simplifying further by noting that the sum over 𝑛 contributes a factor of 2𝑇, we obtain: 

 
.))(log,(

4

2
lim

)(log

|=|
dzzfD

z

k

iT

T z

ezT


→


  (2.3.4) 

In simpler terms, as 𝑇 → ∞, the above expression reduces to: 

 𝑓(𝑘) =
1

2𝜋𝑖
∮

𝑘𝑙𝑜𝑔(𝑧)

𝑧
𝐷(𝑓, 𝑙𝑜𝑔( 𝑧))𝑑𝑧

|𝑧|=𝑒𝜎 . (2.3.5) 
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The above result provides an alternative inversion formula for the Dirichlet series, with the contour integral taken 

over the curve |𝑧| = 𝑒𝜎. However, this result can be extended to any closed curve 𝐶 in the complex plane, provided 

that the logarithm of the integrated function 𝑘𝑙𝑜𝑔(𝑧) is well-defined (i.e., avoiding branch cuts). The generalized 

inversion formula is therefore: 

 𝑓(𝑘) =
1

2𝜋𝑖
∮

𝑘𝑙𝑜𝑔(𝑧)

𝑧
𝐷(𝑓, 𝑙𝑜𝑔( 𝑧))𝑑𝑧.

𝐶
 (2.3.6) 

Here, 𝐶 is a contour that encloses the relevant singularities of the transformed series 𝐷(𝑓, 𝑙𝑜𝑔( 𝑧)), ensuring that 

the integral converges and the logarithmic function remains single-valued within the region.  

2.4. Asymptotic Approximations 

In this subsection, we derive asymptotic approximations for the integral kernels 𝐾(𝑘, 𝑠) as 𝑘 → ∞. These 

approximations are central to simplifying the inversion of Dirichlet series and are particularly useful in applications 

requiring asymptotic analysis. 

We begin with the following integral kernel: 

 𝐾(𝑘, 𝑠) = ∫ 𝑒𝑖𝑘𝜃 𝛤(𝑠)

(𝑖𝜃)𝑠

𝑑𝜃

2𝜋
.

𝜋

−𝜋
 (2.4.1) 

By applying the Riemann-Lebesgue lemma [12], as 𝑘 → +∞, the oscillatory behavior of the exponential term 

dominates, leading to the approximation: 

 𝐾(𝑘, 𝑠) ~ 
𝛤(𝑠)

𝜋𝑠+1𝑘
𝑠𝑖𝑛 (𝑘𝜋 − 𝑠

𝜋

2
). (2.4.2) 

Next, we consider an alternative integral kernel given by: 

 𝐾(𝑘, 𝑠) =
1

2𝜋𝑖
∮ 𝑧𝑘−1 𝛤(𝑠)

(𝑙𝑜𝑔(𝑧))𝑠 𝑑𝑧,
𝐶

 (2.4.3) 

where 𝐶 is a contour enclosing the singularity at 𝑧 = 1. Using the final value theorem for the Z-transform [10], we 

obtain the leading-order behavior: 

 𝐾(𝑘, 𝑠) ~ lim
𝑧→1

(𝑧 − 1)
𝛤(𝑠)

(𝑙𝑜𝑔(𝑧))𝑠 (2.4.4) 

By applying the definition of the derivative near 𝑧 = 1, we simplify the above expression to: 

 𝐾(𝑘, 𝑠) ~ 
𝛤(𝑠)

𝑠(𝑙𝑜𝑔(𝑧))𝑠−1 ,  𝑧 → 1. (2.4.5) 

The above result provides the asymptotic form for the kernel near its dominant singularity. Next, we examine 

two additional forms of integral kernels, which asymptotically converge to the same result. The first form is given 

by: 

 𝐾(𝑘, 𝑠) =
1

𝑠
∑

(−1)𝑛+1

𝑛!

𝛤(𝑠+1)𝑘𝑠−𝑛

𝛤(𝑠+1−𝑛)
,∞

𝑛=1  (2.4.6) 

while the second form is expressed as: 

 𝐾(𝑘, 𝑠) = ∫ sinc(𝑥)
∞

−∞
(𝑘 − 𝑥)𝑠−1𝑑𝑥, (2.4.7) 

where sinc(𝑥) =
𝑠𝑖𝑛(𝜋𝑥)

𝜋𝑥
 is the normalized sine function. 

Both kernels asymptotically simplify to the same leading-order term as 𝑘 → ∞: 
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 𝐾(𝑘, 𝑠) ~ 𝑘𝑠−1. (2.4.8) 

To justify this result, consider the first integral kernel. Since the exponents of 𝑘 in the series form a decreasing 

sequence, the leading-order behavior is dominated by the first term of the summation. Thus, the approximation 

reduces to 𝑘𝑠−1. 

For the second kernel, we proceed as follows. Factoring out 𝑘𝑠−1 from the integral, we write: 

 𝐾(𝑘, 𝑠) = 𝑘𝑠−1 ∫ sinc(𝑥)
∞

−∞
(1 −

𝑥

𝑘
)

𝑠−1

𝑑𝑥. (2.4.9) 

As 𝑘 → ∞, the term (1 −
𝑥

𝑘
)

𝑠−1

 can be approximated by: 

(1 −
𝑥

𝑘
)

𝑠−1

~ 1. 

Substituting this approximation back into the integral, we obtain: 

 𝐾(𝑘, 𝑠) ~ 𝑘𝑠−1 ∫ sinc(𝑥)𝑑𝑥.
∞

−∞
 (2.4.10) 

Using the standard result: 

∫ sinc(𝑥)𝑑𝑥
∞

−∞

= 1, 

we recover the asymptotic form: 

 𝐾(𝑘, 𝑠) ~ 𝑘𝑠−1. (2.4.11) 

This result demonstrates that both integral kernels converge asymptotically to the same leading-order behavior. 

Due to its simplicity and generality, this approximation will be utilized extensively in subsequent applications 

involving the asymptotic inversion of Dirichlet series.  

2.5. Applications 

In this subsection, we apply the previously derived asymptotic approximations to invert the Dirichlet series and 

approximate the corresponding arithmetic functions. The key tool we will use is the following Average Order 

Theorem, which has wide-ranging applications. 

Theorem 1 (Average Order Theorem) Let 𝑆𝑥 = ∑ 𝑎𝑛𝑛≤𝑥  represent the sum of an arithmetic function 𝑎𝑛, and 

suppose that 𝑆𝑥 can be asymptotically approximated by a differentiable function 𝑓(𝑥) ∈ 𝐶1, where 𝑓(𝑥) → ∞ as 𝑥 →

∞. Then, under the condition:  

𝑆𝑥 = 𝑓(𝑥) + 𝑂(𝑓′(𝑥)),  𝑥 → ∞, 

the individual terms 𝑎𝑘 can be approximated as:  

𝑎𝑘 ~ 
𝑑𝑆𝑥

𝑑𝑥
|

𝑥=𝑘
 ~ 

𝑑𝑓(𝑥)

𝑑𝑥
|

𝑥=𝑘
,  𝑘 → ∞. 

Proof. We start with the sum:  

 𝑆𝑥 = ∑ 𝑎𝑛𝑛≤𝑥 . (2.5.1) 

By assumption, 𝑆𝑥 can be asymptotically approximated by a smooth function 𝑓(𝑥), such that:  
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 𝑆𝑥  ~ 𝑓(𝑥),  𝑥 → ∞. (2.5.2) 

The sequence 𝑎𝑛 is then approximated by the derivative of 𝑓(𝑥):  

 𝑎𝑘  ~ 
𝑑𝑓(𝑥)

𝑑𝑥
|

𝑥=𝑘
,  𝑘 → ∞. (2.5.3) 

To justify this result, we invoke the inversion formula for the Dirichlet series:  

 𝑆𝑥 = ∫
𝑥𝑠

𝑠
𝐷(𝑎, 𝑠)

𝜎+𝑖∞

𝜎−𝑖∞

𝑑𝑠

2𝜋𝑖
: 𝑓(𝑥), (2.5.4) 

where:  

 𝐷(𝑎, 𝑠) = ∑
𝑎𝑛

𝑛𝑠 .∞
𝑛=1  (2.5.5) 

Substituting the kernel approximation 𝐾(𝑘, 𝑠): 𝑘𝑠−1 leads to:  

 𝑎𝑘  ~ ∫ 𝑘𝑠−1𝐷
𝜎+𝑖∞

𝜎−𝑖∞
(𝑎, 𝑠)

𝑑𝑠

2𝜋𝑖
=

𝑑𝑆𝑥

𝑑𝑥
|

𝑥=𝑘
. (2.5.6) 

Finally, applying De l’Hospital’s rule confirms the asymptotic approximation in (2.5.3).  

Handling Discontinuities with the Dirac Delta Function: If 𝑓(𝑥) and 𝑆𝑥 exhibit Dirac delta-type discontinuities 

at integer points, we substitute the Dirac delta function with the normalized sine function sinc(𝑘 − 𝑎), defined as:  

 𝛿(𝑘 − 𝑎) →
𝑠𝑖𝑛(𝜋(𝑘−𝑎))

𝜋(𝑘−𝑎)
= sinc(𝑘 − 𝑎),  𝑘, 𝑎 ∈ Z. (2.5.7) 

This substitution is valid only at integer discontinuities and is justified using the kernel approximation derived 

earlier. 

Nowhere Differentiable Functions: If 𝑓(𝑥) and 𝑆𝑥 are nowhere differentiable, the arithmetic function 𝑎𝑘 can be 

approximated using its mean value:  

 𝑎𝑘  ~ 
𝑆𝑘

𝑘
 ~ 

𝑓(𝑘)

𝑘
,  𝑘 → ∞. (2.5.8) 

This result follows directly from the Average Order Theorem by applying De l’Hospital’s rule.  

Connection of the Average Order Theorem with the Mean Value Theorem: As observed, the average order 

theorem resembles a kind of mean value theorem. This can be explained by considering the differential mean value 

theorem on the interval (𝑁 − 1, 𝑁) as 𝑁 → ∞, specifically:  

𝑓′(𝜉) =
𝑓(𝑁) − 𝑓(𝑁 − 1)

𝑁 − (𝑁 − 1)
,  𝜉 ∈ (𝑁 − 1, 𝑁). 

Since 𝑁 → ∞, we can approximate 𝜉 ≈ 𝑁, which gives:  

𝑓′(𝑁) ~ 𝑓(𝑁) − 𝑓(𝑁 − 1). 

Furthermore, the average order theorem resolves the issue of discontinuities of the form 𝑓(𝑁) − 𝑓(𝑁 − 1) = ∞ −

∞ for 𝑓(𝑁) → ∞ as 𝑁 → ∞.  

2.6. Specific Applications of the Average Order Theorem 

2.6.1. Zeta Function and Divisor Sums 

Consider the zeta function:  
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 𝜁(𝑠) = 𝐷(1, 𝑠) =
𝑠

𝑠−1
− 𝑠 ∫

{𝑥}

𝑥𝑠+1 𝑑𝑥
∞

1
, (2.6.1) 

where {𝑥} represents the fractional part of 𝑥. Using the convolution property of Dirichlet series:  

 𝐷(𝑓, 𝑠)𝐷(𝑔, 𝑠) = 𝐷(𝑓 ∗ 𝑔, 𝑠), (2.6.2) 

where:  

 𝑓 ∗ 𝑔 = ∑ 𝑓(𝑘)𝑔𝑘|𝑛 (
𝑛

𝑘
), (2.6.3) 

and substituting 𝑔 (
𝑛

𝑘
) = 1, we obtain:  

 𝜁(𝑠)𝐷(𝑓, 𝑠) = ∑
∑ 𝑓(𝑘)𝑘|𝑛

𝑛𝑠 .∞
𝑛=1  (2.6.4) 

Applying the Average Order Theorem leads to the approximation:  

 ∑ 𝑓𝑘|𝑛 (𝑘) ~ ∫ 𝑛𝑠−1𝜁
𝜎+𝑖∞

𝜎−𝑖∞
(𝑠)𝐷(𝑓, 𝑠)

𝑑𝑠

2𝜋𝑖
 ~ ∑

𝑓(𝑚)

𝑚
,𝑛

𝑚=1  𝑛 → ∞. (2.6.5) 

2.6.2. Divisor Characteristic Function 

The characteristic function for divisors 1𝑚|𝑛 has the Dirichlet series:  

 
1

𝑚𝑠 𝜁(𝑠) = ∑
1𝑚|𝑛

𝑛𝑠 .∞
𝑛=1  (2.6.6) 

The divisor characteristic function 1𝑚|𝑛 is defined as:  

1𝑚|𝑛 = (
1, if𝑚|𝑛,

0, otherwise.
 

Using similar steps, we obtain the approximation:  

 1𝑚|𝑛 ~ 
𝑢(𝑛−𝑚)

𝑚
,  𝑛 → ∞, (2.6.7) 

where 𝑢(𝑥) is the Heaviside step function.  

2.6.3. Greatest Common Divisor Indicator Function 

The greatest common divisor (gcd) indicator function is defined as:  

1𝑔𝑐𝑑(𝑘,𝑛)=𝑚 = (
1, if 𝑔𝑐𝑑( 𝑘, 𝑛) = 𝑚,

0, otherwise.
 

The corresponding Dirichlet series is:  

𝜁(𝑠)
1𝑚|𝑘

𝑚𝑠
∏ (1 −

1

𝑝𝑠
)

𝑝|
𝑘

𝑚

= ∑
1𝑔𝑐𝑑(𝑘,𝑛)=𝑚

𝑛𝑠
.

∞

𝑛=1

 

Using the average order theorem, we derive:  

1𝑔𝑐𝑑(𝑘,𝑛)=𝑚 ~ 𝑢(𝑛 − 𝑚)
1𝑚|𝑘

𝑚
∏ (1 −

1

𝑝
) ,

𝑝|
𝑘

𝑚

 

or equivalently:  
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1𝑔𝑐𝑑(𝑘,𝑛)=𝑚 ~ 𝑢(𝑛 − 𝑚)
1𝑚|𝑘

𝑘
𝜑 (

𝑘

𝑚
), 

where 𝜑(𝑛) is the Euler totient function, defined by:  

 𝜑(𝑛) = 𝑛 ∏ (1 −
1

𝑝
)𝑝|𝑛  (2.6.8) 

2.6.4. Prime Characteristic Function and the Prime Number Theorem 

The prime characteristic function 𝜒𝑃(𝑛) is defined as:  

 𝜒𝑃(𝑛) = (
1, 𝑛 ∈ 𝑃,
0, 𝑛 ∉ 𝑃.

 (2.6.9) 

The prime counting function 𝜋(𝑥) is given by:  

 𝜋(𝑥) = ∑ 𝜒𝑃1≤𝑛≤𝑥 (𝑛). (2.6.10) 

According to the Prime Number Theorem [?], we have:  

 𝜋(𝑥) ~ ∫
1

𝑙𝑜𝑔 𝑡

𝑥

2
𝑑𝑡,  𝑥 → ∞. (2.6.11) 

By the Average Order Theorem, the prime characteristic function satisfies:  

 𝜒𝑃(𝑛) ~ 
𝑢(𝑛−2)

𝑙𝑜𝑔 𝑛
,  𝑛 → ∞. (2.6.12) 

2.6.5. Prime Number Function 

Another application, is finding a function that generates prime numbers, or the inverse prime counting function. 

That is defined as:  

𝜋−1: 𝑁 → 𝑃 

or, in another notation:  

𝜋−1(𝑛) = 𝑝𝑛 

where 𝑝𝑛 is the nth prime number.  

With the corresponding Dirichlet series:  

 𝐷(𝜋−1, 𝑠) = ∑
𝜋−1(𝑛)

𝑛𝑠 .∞
𝑛=1  (2.6.13) 

An alternative presentation of this series is the following:  

 𝐷(𝜋−1, 𝑠) = ∑
𝑝

𝜋(𝑝)𝑠 ,𝑝∈𝑃  (2.6.14) 

with 𝑃 the set of the prime numbers and 𝜋(𝑛) is the prime counting function [4]. Another presentation of the series 

above, is by Stieltjes integration [7] with measure the prime counting function, yields:  

 𝐷(𝜋−1, 𝑠) = ∫
𝑡

𝜋(𝑡)𝑠

𝑑𝜋(𝑡)

𝑑𝑡

∞

2
𝑑𝑡. (2.6.15) 

Using integration by parts, gives the following result:  

 𝐷(𝜋−1, 𝑠) =
2

𝑠−1
+

1

𝑠−1
∫

1

𝜋(𝑡)𝑠−1 𝑑𝑡,
∞

2+𝜀
 ∀𝜀 ∈ (0,1). (2.6.16) 
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Approximating the inversion of the Dirichlet series, we get:  

 𝜋−1(𝑘) ~ 
1

2𝜋𝑖
∫ 𝑘𝑠−1𝐷

𝜎+𝑖∞

𝜎−𝑖∞
(𝜋−1, 𝑠)𝑑𝑠. (2.6.17) 

or:  

 𝜋−1(𝑘) = 2𝑢(𝑘 − 1) + ∫ 𝑢
∞

2+𝜀
(𝑘 − 𝜋(𝑡))𝑑𝑡, ∀𝜀 ∈ (0,1). (2.6.18) 

Or expressing the above equation in a series form:  

 𝜋−1(𝑘) = 2𝑢(𝑘 − 1) + ∑ 𝑢∞
𝑛=2 (𝑘 − 𝜋(𝑛) − 1). (2.6.19) 

The inverse prime counting function 𝜋−1(𝑘), can be expressed in terms of the prime gap function 𝑔𝑘 = 𝜋−1(𝑘 +

1) − 𝜋−1(𝑘) 2.6.16 gets the form:  

 𝐷(𝜋−1, 𝑠) =
2

𝑠−1
+

1

𝑠−1
∑ ∫

1

(𝑛+1)𝑠−1

𝑝𝑛+1+𝜀

𝑝𝑛+𝜀
𝑑𝑡∞

𝑛=1 ,  ∀𝜀 ∈ (0,1), (2.6.20) 

or:  

 𝐷(𝜋−1, 𝑠) =
2

𝑠−1
+

1

𝑠−1
∑

𝑔𝑛

(𝑛+1)𝑠−1
∞
𝑛=1 . (2.6.21) 

Using the approximate Dirichlet series inversion:  

 𝜋−1(𝑘) = 2𝑢(𝑘 − 1) + ∑ 𝑔𝑛𝑢∞
𝑛=1 (𝑘 − 𝑛 − 1). (2.6.22) 

2.6.6. Prime Gap Function 

According to the previous results, prime gap function is given by the equation:  

 𝑔𝑘 = ∑ 𝑠𝑖𝑛𝑐∞
𝑛=0 (𝑘 − 𝜋(𝑛)):

𝑑𝜋−1(𝑥+1)

𝑑𝑥
|𝑥=𝑘,  𝑘 ∈ 𝑁. (2.6.23) 

This function 𝑔𝑘, is defined as the difference between consecutive primes 𝑝𝑘+1 and 𝑝𝑘.  

2.6.7. Prime Factor Counting Function 

The prime factor counting function 𝜔(𝑛), which counts the number of distinct prime factors of 𝑛, satisfies the 

relation:  

 𝜔(𝑛) = ∑ 𝜒𝑃𝑘|𝑛 (𝑘). (2.6.24) 

With a combination of the results of this subsection, for 𝑛 → ∞ yields to the following asyptotic approximation:  

 𝜔(𝑛) ~ ∑
𝜒𝑃(𝑚)

𝑚

𝑛
𝑚=1  ~ ∑

1

𝑚𝑙𝑜𝑔(𝑚)

𝑛
𝑚=2 ,  𝑛 → ∞. (2.6.25) 

or, using the Euler-Maclaurin summation approximation [?]:  

 𝜔(𝑛) ~ ∑
1

𝑚𝑙𝑜𝑔(𝑚)

𝑛
𝑚=2  ~ ∫

1

𝑡𝑙𝑜𝑔(𝑡)

𝑛

2
 𝑑𝑡 = 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) − 𝑙𝑜𝑔(𝑙𝑜𝑔(2)),  𝑛 → ∞. (2.6.26) 

which is a proof of the Hardy-Ramanujan theorem [5].  

2.6.8. Divisor Counting Function 

The divisor counting function 𝑑(𝑛), which counts the number of divisors of 𝑛, satisfies:  

 𝑑(𝑛) = ∑ 1.𝑘|𝑛  (2.6.27) 
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Which can be approximated by the harmonic series 𝐻𝑛:  

 𝑑(𝑛) ~ ∑
1

𝑚

𝑛
𝑚=1 = 𝐻𝑛 ,  𝑛 → ∞. (2.6.28) 

Using the average order theorem approach, consider the function:  

 𝜎(𝑥) = ∑ 𝑑(𝑛).𝑛≤𝑥  (2.6.29) 

The function 𝜎(𝑥) can be approximated as in the book ( [5] by the expression:  

 𝜎(𝑥) ~ 𝑥𝑙𝑜𝑔(𝑥) + (2𝛾 − 1)𝑥. (2.6.30) 

As observed, the function diverges to infinity as 𝑥 approaches infinity, using the average order theorem to derive 

𝑑(𝑛):  

 𝑑(𝑛) ~ 𝑙𝑜𝑔(𝑛) + 2𝛾,  𝑛 → ∞, (2.6.31) 

where 𝛾 is the Euler-Mascheroni constant. 

3. Prime Numbers 

In this section, we introduce key functions that describe and quantify the distribution of prime numbers. These 

functions are fundamental tools in analytic number theory and provide insights into the properties of primes. 

Additionally, we examine their asymptotic approximations as their arguments approach infinity. A significant aspect 

of this discussion involves the role of the Riemann zeta function and its connection to the distribution of prime 

numbers. In particular, the location of the roots of the zeta function and the Riemann Hypothesis play a central role 

in determining the accuracy of these approximations. 

The Riemann Hypothesis conjectures that all nontrivial zeros of the zeta function lie on the critical line ℜ(𝑠) =
1

2
 

in the complex plane. If true, it provides deep implications for the error terms in approximations of prime-related 

functions and, consequently, for the distribution of primes. 

In the following subsections, we explore key arithmetic functions related to prime numbers, such as the prime 

characteristic function, the prime pair counting function, and the prime gap function. We derive their asymptotic 

forms using inversion techniques for Dirichlet series, integral kernels, and results from asymptotic analysis.  

3.1. Prime Characteristic Function 

The prime characteristic function is a fundamental arithmetic function that identifies whether a given natural 

number 𝑛 is prime. It is defined as: 

 𝜒𝑃(𝑛) = (
1, if𝑛 ∈ P,
0, otherwise,

 (3.1.1) 

where 𝑃 denotes the set of prime numbers.  

The prime characteristic function can be expressed as the following integral: 

 
,)(

2

1
lim=)( dssPn

iT
n s

iT

iTT


+

−→




P

 (3.1.2) 

where 𝜎 > 1 and 𝑃(𝑠) is a Dirichlet series given by:  

 𝑃(𝑠) = ∑
1

𝑝𝑠 .𝑝∈𝑃  (3.1.3) 
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The Dirichlet series 𝑃(𝑠) is closely related to the Riemann zeta function 𝜁(𝑠), as shown in [4]. It can be expressed 

in terms of the Mobius function 𝜇(𝑚) as:  

 𝑃(𝑠) = ∑
𝜇(𝑚) 𝑙𝑜𝑔(𝜁(𝑚𝑠))

𝑚
.∞

𝑚=1  (3.1.4) 

The Mobius Function: The Mobius function 𝜇(𝑛) is an important multiplicative function in number theory and 

is defined as follows:  

 𝜇(𝑛) =  {
(−1)𝜔(𝑛), if  𝑝2 ∤ 𝑛∀𝑝 ∈ 𝑃,
1,              if  𝑛 = 1,              
0,              otherwise,          

 (3.1.5) 

where 𝜔(𝑛) is the number of distinct prime factors of 𝑛. 

The Mobius function satisfies the following key properties:  

• The Mobius inversion formula:  

 𝛿𝑛,1 = ∑ 𝜇𝑑|𝑛 (𝑑), (3.1.6) 

where 𝛿𝑛,1 is the Kronecker delta function.  

• The Dirichlet series representation of 𝝁(𝒏):  

 
1

𝜁(𝑠)
= 𝐷(𝜇, 𝑠) = ∑

𝜇(𝑛)

𝑛𝑠 ,∞
𝑛=1  ℜ(𝑠) > 1. (3.1.7) 

Deriving a Formula for the Prime Characteristic Function: Substituting equation (3.1.4) into the integral 

representation (3.1.2) and performing a change of variables, we obtain the following result for 𝜒𝑃(𝑛):  
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 (3.1.8) 

The logarithm of the Riemann zeta function 𝜁(𝑠) can be expanded as:  

 𝑙𝑜𝑔( 𝜁(𝑠)) = ∑
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)

1

𝑛𝑠 ,∞
𝑛=2  (3.1.9) 

where 𝛬(𝑛) is the von Mangoldt function, which is defined as:  

 𝛬(𝑛) = {
𝑙𝑜𝑔( 𝑝), if  𝑛 = 𝑝𝑟 for some prime 𝑝 and integer  𝑟 ≥ 1,
0,          otherwise.                                                                    

 (3.1.10) 

For further details regarding the Mobius function 𝜇(𝑚) and the von Mangoldt function 𝛬(𝑛), readers are referred 

to [5]. 

We can compute the prime characteristic function 𝜒𝑃(𝑛) using a summation involving the von Mangoldt function 

𝛬(𝑛) and the Mobius function 𝜇(𝑚). The function is expressed as follows: 

 𝜒𝑃(𝑛) = ∑
𝛬(𝑘)

𝑙𝑜𝑔(𝑘)

𝜇(𝑚)

𝑚
,𝑛=𝑘𝑚  (3.1.11) 

where the summation is taken over all integers 𝑘 and 𝑚 ≥ 1 such that 𝑛 = 𝑘𝑚. This expression can be rewritten in a 

more convenient form: 

 𝜒𝑃(𝑛) =
1

𝑙𝑜𝑔(𝑛)
∑ 𝛬(𝑘)𝜇𝑛=𝑘𝑚 (𝑚). (3.1.12) 
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In a more compact notation, equation (3.1.12) can be expressed as: 
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 (3.1.13) 

where the summation is taken over all 𝑚 ≥ 1 such that 𝑛1/𝑚 is a natural number. This compact form emphasizes 

the role of the Mobius function 𝜇(𝑚) in eliminating contributions from powers of primes. 

Von Mangoldt Function and the Zeta Function Roots: According to Landau [1], the von Mangoldt function 

𝛬(𝑛) can be expressed as a summation involving the nontrivial zeros 𝜌 of the Riemann zeta function 𝜁(𝑠) within the 

critical strip 0 < ℜ(𝜌) < 1. Specifically, we have: 
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 (3.1.14) 

Here, the sum is taken over all nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 of 𝜁(𝑠), where 𝛽 and 𝛾 denote the real and imaginary 

parts of 𝜌, respectively. This expression highlights the deep connection between the von Mangoldt function and the 

distribution of the zeros of the zeta function, which, in turn, underpins the distribution of prime numbers.  

By changing the order of summation and applying the Taylor expansion for the exponential function, we obtain 

the following result:  

 𝐹(𝑛; 𝑠) = ∑ 𝜇(𝑚)𝑛
𝑠

𝑚∞
𝑚=1 = ∑

𝑙𝑜𝑔(𝑛)𝑘

𝑘!𝜁(𝑘)
𝑠𝑘∞

𝑘=1 . (3.1.15) 

Using the integral representation in (3.1.8), the prime characteristic function 𝜒𝑃(𝑛) can be expressed as:  
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 (3.1.16) 

Using the Dirichlet series for the logarithmic derivative of the Riemann zeta function:  

 −
𝜁′(𝑠)

𝜁(𝑠)
= ∑

𝛬(𝑛)

𝑛𝑠 ,∞
𝑛=2  (3.1.17) 

we can rewrite 𝜒𝑃(𝑛) as:  
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 (3.1.18) 

Alternatively, this can be written in a more compact form:  
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 (3.1.19) 

Using the fact that 1=)(inf nn +Z  and applying the Taylor expansion for the exponential function, we derive 

the following inequality:  

 0 ≤ 𝜒𝑃(𝑛) ≤
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)
. (3.1.20) 

Furthermore, since 1=)(inf nn +Z , we obtain:  
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|𝐹(𝑛; 𝑠)| < |𝑛𝑠|. 

Connection to the Zeta Function Zeros: According to Landau [1], the prime characteristic function can also be 

expressed as a summation involving the nontrivial zeros 𝜌 of the Riemann zeta function 𝜁(𝑠). Specifically, we have:  
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 (3.1.21) 

where the summation is taken over all nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 of 𝜁(𝑠), with 0 < ℜ(𝜌) = 𝛽 < 1 and ℑ(𝜌) = 𝛾. With 

upper bound:  
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 (3.1.22) 

Returning to the definition of the prime counting function, it is expressed as: 

 𝜋(𝑥) = ∑ 𝜒𝑃(𝑛),1≤𝑛≤𝑥  (3.1.23) 

where 𝜒𝑃(𝑛) is the prime characteristic function. Using the operator �̂� introduced in (2.2.5), the prime characteristic 

function 𝜒𝑃(𝑥) can be written as:  

 𝜒𝑃(𝑥) = �̂�(𝜋(𝑥)). (3.1.24) 

The operator �̂� is defined as:  

 �̂�(𝜋(𝑥)) = ∑
(−1)𝑛+1

𝑛!

𝑑𝑛𝜋(𝑥)

𝑑𝑥𝑛 .∞
𝑛=1  (3.1.25) 

Another Explicit Formula for the Prime Characteristic Function: As described in [4], the prime counting 

function 𝜋(𝑥) can be expressed explicitly as:  

 𝜋(𝑥) = ∑
𝜇(𝑚)

𝑚
li(𝑥1/𝑚)𝑚≥1 − ∑ ∑

𝜇(𝑚)

𝑚
li(𝑥𝜌/𝑚),𝑚≥1𝜁(𝜌)=0  (3.1.26) 

where li(𝑥) is the logarithmic integral function, defined as:  

 li(𝑥) = ∫
1

𝑙𝑜𝑔(𝑡)
𝑑𝑡.

𝑥

2
 (3.1.27) 

To construct 𝜒𝑃(𝑥) from the operator �̂� is used by the auxiliary function:  

 𝑅(𝑥𝑠) = ∑
𝜇(𝑚)

𝑚
li(𝑥𝑠/𝑚)𝑚≥1 . (3.1.28) 

Using the operator �̂�, we define:  

 𝑄(𝑥; 𝑠) = �̂�(li(𝑥𝑠)). (3.1.29) 

To simplify differentiation, consider the derivative of 𝑄(𝑥; 𝑠) with respect to 𝑠:  

 
𝑑𝑄(𝑥;𝑠)

𝑑𝑠
= �̂� (

𝑑li(𝑥𝑠)

𝑑𝑠
). (3.1.30) 

Since:  

 
𝑑li(𝑥𝑠)

𝑑𝑠
=

𝑥𝑠

𝑠
, (3.1.31) 

applying �̂� yields:  
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𝑑𝑄(𝑥;𝑠)

𝑑𝑠
= �̂� (

𝑥𝑠

𝑠
). (3.1.32) 

Expressing this in series form:  

 
𝑑𝑄(𝑥;𝑠)

𝑑𝑠
= ∑

(−1)𝑛+1

𝑛!

1

𝑠

𝑑𝑛𝑥𝑠

𝑑𝑥𝑛 .∞
𝑛=1  (3.1.33) 

Using the derivatives of the power function 𝑥𝑠, this becomes:  

 
𝑑𝑄(𝑥;𝑠)

𝑑𝑠
= ∑

(−1)𝑛+1

𝑛!

𝛤(𝑠)

𝛤(𝑠−𝑛+1)
𝑥𝑠−𝑛∞

𝑛=1 . (3.1.34) 

To compute 𝑄(𝑥; 𝑠), integrate with respect to 𝑠:  

 𝑄(𝑥; 𝑠) = ∫ ∑
(−1)𝑛+1

𝑛!

𝛤(𝑡)

𝛤(𝑡−𝑛+1)
𝑥𝑡−𝑛∞

𝑛=1
𝑠

−∞
𝑑𝑡. (3.1.35) 

Combining the previous results, the prime characteristic function 𝜒𝑃(𝑘) can be expressed as:  

 𝜒𝑃(𝑘) = ∑
𝜇(𝑚)

𝑚
𝑄𝑚≥1 (𝑘; 1/𝑚) − ∑ ∑

𝜇(𝑚)

𝑚𝑚≥1𝜁(𝜌)=0 𝑄(𝑘; 𝜌/𝑚), (3.1.36) 

where 𝜁(𝜌) = 0 denotes the zeros of the Riemann zeta function.  

3.1.1. Asymptotic Approximation 

Using the average order theorem, the prime characteristic function 𝜒𝑃(𝑛) admits the following asymptotic 

expansion:  

 𝜒𝑃(𝑛) ~ 
𝑢(𝑛−2)

𝑙𝑜𝑔(𝑛)
+ 𝑂(1), (3.1.37) 

where 𝑢(𝑛) is the unit step function and 𝑂 denotes the Landau big-𝑂 notation as described in [12]. 

Under the assumption of the Riemann Hypothesis, this approximation can be refined to:  

 𝜒𝑃(𝑛) =
𝑢(𝑛−2)

𝑙𝑜𝑔(𝑛)
+ 𝑂 (

𝑙𝑜𝑔(𝑛)

√𝑛
). (3.1.38) 

Ramanujan’s Approximation: An alternative asymptotic approximation for the prime characteristic function 

was provided by Ramanujan, as detailed in [2]. This approximation is given by:  

 𝜒𝑃(𝑛) ~
𝑑𝜋(𝑥)

𝑑𝑥
|

𝑥=𝑛
 ~ 

1

𝑛 𝑙𝑜𝑔(𝑛)
∑

𝜇(𝑚)

𝑚
𝑛1/𝑚.𝑚≥1  (3.1.39) 

Using the series expansion for 𝐹(𝑛; 𝑠) from (3.1.15), this can be rewritten as:  

 𝜒𝑃(𝑛) ~ 
1

𝑛 𝑙𝑜𝑔(𝑛)
∑

𝑙𝑜𝑔(𝑛)𝑘

𝑘!𝜁(𝑘+1)
.∞

𝑘=0  (3.1.40) 

Notes on Asymptotics: The asymptotic expansions presented above highlight the central role of the logarithmic 

term 𝑙𝑜𝑔( 𝑛) and the contribution of higher-order corrections. The refined result incorporating the Riemann 

Hypothesis emphasizes the connection between prime-related functions and the zeros of the Riemann zeta 

function, further illustrating the deep interplay between prime number distribution and analytic number theory. 

3.2. Prime Pair Counting Function 

The problem considered in this subsection is the construction of a function that counts pairs of prime numbers 

with a given integer gap 𝑔. Specifically, we k to count pairs of prime numbers (𝑝, 𝑞) such that 𝑝 + 𝑔 = 𝑞 with 𝑝, 𝑞 ∈ 𝑃, 

where 𝑃 denotes the set of all prime numbers. 
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Indicator Function for Prime Pairs: We begin by defining an indicator function 1𝐸(𝑛), which identifies numbers 

𝑛 such that both 𝑛 and 𝑛 − 𝑔 are prime:  

 1𝐸(𝑛) = 1𝑃(𝑛)1𝑃(𝑛 − 𝑔), (3.2.1) 

where the set 𝐸 is defined as:  

𝐸 = {𝑛 ∈ 𝑃} ∩ {𝑛 − 𝑔 ∈ 𝑃}. 

The general form of an indicator function 1𝛺(𝑥) is given as:  

 1𝛺(𝑥) = (
1, if𝑥 ∈ Ω,
0, if𝑥 ∉ Ω.

 (3.2.2) 

Using properties of indicator functions from measure theory [11], we replace 1𝑃(𝑛) with the prime characteristic 

function 𝜒𝑃(𝑛), yielding:  

 1𝐸(𝑛) = 𝜒𝑃(𝑛)𝜒𝑃(𝑛 − 𝑔). (3.2.3) 

Definition of the Prime Pair Counting Function: The prime pair counting function with gap 𝑔, denoted 𝜋𝑔(𝑥), 

is then defined as:  

 𝜋𝑔(𝑥) = ∑ 𝜒𝑃𝑛≤𝑥 (𝑛)𝜒𝑃(𝑛 − 𝑔). (3.2.4) 

Using the inequality (3.1.20), we derive an upper bound for 𝜋𝑔(𝑥):  

 𝜋𝑔(𝑥) ≤ ∑
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)

𝛬(𝑛−𝑔)

𝑙𝑜𝑔(𝑛−𝑔)
,2+𝑔≤𝑛≤𝑥  (3.2.5) 

where 𝛬(𝑛) is the von Mangoldt function. This upper bound is particularly useful for testing prime gap conjectures, 

as it indicates whether the sum converges or diverges. 

Asymptotic Approximation: From inequality (3.2.5), the asymptotic approximation for 𝜋𝑔(𝑥) is:  

 𝜋𝑔(𝑥) ~ ∑
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)

𝛬(𝑛−𝑔)

𝑙𝑜𝑔(𝑛−𝑔)
.2+𝑔≤𝑛≤𝑥  (3.2.6) 

Using the asymptotic expansion of the prime characteristic function (3.1.37), we deduce:  

 𝜋𝑔(𝑥) ~ ∑
𝑢(𝑛−2)

𝑙𝑜𝑔(𝑛)

𝑢(𝑛−𝑔−2)

𝑙𝑜𝑔(𝑛−𝑔)
,2+𝑔≤𝑛≤𝑥  (3.2.7) 

or equivalently:  

 𝜋𝑔(𝑥) ~ ∑
1

𝑙𝑜𝑔(𝑛)

1

𝑙𝑜𝑔(𝑛−𝑔)
.2+𝑔≤𝑛≤𝑥  (3.2.8) 

Assuming the Riemann Hypothesis, the approximation refines to:  

 𝜋𝑔(𝑥) ~ ∑
1

𝑙𝑜𝑔(𝑛)

1

𝑙𝑜𝑔(𝑛−𝑔)2+𝑔≤𝑛≤𝑥 + 𝑂 (√𝑥 − 𝑔
𝑙𝑜𝑔(𝑥) 𝑙𝑜𝑔(𝑥−𝑔)

√𝑥
) ,  𝑥 ≥ 2 + 𝑔. (3.2.9) 

Using the Euler-Maclaurin summation formula, the above sum can be approximated by an integral:  

 𝜋𝑔(𝑥) ~ ∫
1

𝑙𝑜𝑔(𝑡)

1

𝑙𝑜𝑔(𝑡−𝑔)
𝑑𝑡.

𝑥

2+𝑔
 (3.2.10) 

Odd Gaps and Special Cases: The approximation (3.2.10) is not valid for odd gaps 𝑔, as all prime numbers 

except 2 are odd. For an odd gap 𝑔, there is at most one pair of primes (2,2 + 𝑔). Consequently, the prime pair 

counting function 𝜋𝑔(𝑥) simplifies to:  
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 𝜋𝑔(𝑥) = 𝜒𝑃(2 + 𝑔)𝑢(𝑥 − 2 − 𝑔),  𝑔 ∈ 2𝑁 + 1, (3.2.11) 

where 𝑢(𝑥) is the unit step function. This captures the unique nature of odd gaps, arising from the parity properties 

of prime numbers. 

3.3. Goldbach Prime Pair Counting Function 

A central problem in number theory is to construct a function that counts prime pairs satisfying the Goldbach 

conjecture. The conjecture states that every even integer 2𝑚 (where 𝑚 ∈ 𝑁,  𝑚 ≥ 3) can be expressed as the sum of 

two prime numbers 𝑝 and 𝑞, with 𝑝, 𝑞 ∈ 𝑃. 

Indicator Function for Goldbach Prime Pairs: To begin, we define the following indicator function:  

 1𝑈(𝑛) = 1𝑃(𝑛)1𝑃(2𝑚 − 𝑛), (3.3.1) 

where 𝑈 = {𝑛 ∈ 𝑃} ∩ {2𝑚 − 𝑛 ∈ 𝑃}. 

Renaming the prime indicator function 1𝑃(𝑛) as the prime characteristic function 𝜒𝑃(𝑛), this becomes:  

 1𝑈(𝑛) = 𝜒𝑃(𝑛)𝜒𝑃(2𝑚 − 𝑛). (3.3.2) 

Definition of the Goldbach Prime Pair Counting Function: The Goldbach prime pair counting function, 

denoted as 𝐺2(𝑚), is defined by the summation:  

 𝐺2(𝑚) = ∑ 𝜒𝑃2≤𝑛 (𝑛)𝜒𝑃(2𝑚 − 𝑛). (3.3.3) 

Using the inequality (3.1.20), we can derive an upper bound for 𝐺2(𝑚):  

 𝐺2(𝑚) ≤ ∑
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)

𝛬(2𝑚−𝑛)

𝑙𝑜𝑔(2𝑚−𝑛)
,2≤𝑛  (3.3.4) 

where 𝛬(𝑛) is the von Mangoldt function. For the Goldbach conjecture to hold, the condition 𝐺2(𝑚) > 0 ∀𝑚 ≥ 3 must 

be satisfied. 

Asymptotic Approximation: From the inequality (3.3.4), the following asymptotic expansion can be derived:  

 𝐺2(𝑚) ~ ∑
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)

𝛬(2𝑚−𝑛)

𝑙𝑜𝑔(2𝑚−𝑛)
.2≤𝑛  (3.3.5) 

Incorporating the asymptotic expression for the prime characteristic function, we deduce:  

 𝐺2(𝑚) ~ ∑
𝑢(𝑛−2)

𝑙𝑜𝑔(𝑛)

𝑢(2𝑚−2−𝑛)

𝑙𝑜𝑔(2𝑚−𝑛)2≤𝑛 , (3.3.6) 

or equivalently:  

 𝐺2(𝑚) ~ ∑
1

𝑙𝑜𝑔(𝑛)

1

𝑙𝑜𝑔(2𝑚−𝑛)

2𝑚−2
𝑛=2 . (3.3.7) 

Assuming the truth of the Riemann Hypothesis, this expression refines to:  

 𝐺2(𝑚) ~ ∑
1

𝑙𝑜𝑔(𝑛)

1

𝑙𝑜𝑔(2𝑚−𝑛)

2𝑚−2
𝑛=2 + 𝑂(√2𝑚 − 2 𝑙𝑜𝑔( 2𝑚 − 2)). (3.3.8) 

Integral Approximation: Since the summation diverges as 𝑚 → ∞, we use the Euler-Maclaurin formula to 

approximate the sum by an integral:  

 𝐺2(𝑚) ~ ∫
1

𝑙𝑜𝑔(𝑡)

2𝑚−2

2

1

𝑙𝑜𝑔(2𝑚−𝑡)
𝑑𝑡. (3.3.9) 
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3.4. Prime 𝒌-Tuple Counting Function 

In number theory, a prime 𝑘 -tuple is a finite collection of prime numbers with constant gaps between 

consecutive primes. Consider the vector of prime numbers 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑘) ∈ 𝑃𝑘, where all primes in the collection 

satisfy the relationship:  

 𝑝𝑛 − 𝑝1 = 𝑔𝑛−1,  ∀𝑛 = 1,2, … , 𝑘,  with𝑔0 = 0. (3.4.1) 

This is a generalization of the prime pair counting function 𝜋𝑔(𝑥). Using similar techniques, we first construct the 

indicator function:  

 1𝑇(𝑛) = 𝜒𝑃(𝑛) ∏ 𝜒𝑃
𝑘−1
𝑖=1 (𝑛 − 𝑔𝑖), (3.4.2) 

where:  

𝑇 = {𝑛 ∈ 𝑃} ∩ ⋂{𝑛 − 𝑔𝑖 ∈ 𝑃}.

𝑘−1

𝑖=1

 

By induction, this indicator function can be shown to correctly identify prime 𝑘 -tuples. The prime 𝑘 -tuple 

counting function is then defined as:  

 𝜋(𝑔1,𝑔2,…,𝑔𝑘−1)(𝑥) = ∑ 𝜒𝑃𝑛≤𝑥 (𝑛) ∏ 𝜒𝑃
𝑘−1
𝑖=1 (𝑛 − 𝑔𝑖). (3.4.3) 

Using induction, we can derive the following inequality:  

 𝜋(𝑔1,𝑔2,…,𝑔𝑘−1)(𝑥) ≤ ∑
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)𝑛≤𝑥 ∏
𝛬(𝑛−𝑔𝑖)

𝑙𝑜𝑔(𝑛−𝑔𝑖)
.𝑘−1

𝑖=1  (3.4.4) 

Asymptotic Approximation: From inequality (3.4.4), we obtain the following asymptotic approximation:  

 𝜋(𝑔1,𝑔2,…,𝑔𝑘−1)(𝑥) ~ ∑
𝛬(𝑛)

𝑙𝑜𝑔(𝑛)𝑛≤𝑥 ∏
𝛬(𝑛−𝑔𝑖)

𝑙𝑜𝑔(𝑛−𝑔𝑖)
.𝑘−1

𝑖=1  (3.4.5) 

If we incorporate the asymptotic approximation of the prime characteristic function, we have:  

 𝜋(𝑔1,𝑔2,…,𝑔𝑘−1)(𝑥) ~ ∑
𝑢(𝑛−2)

𝑙𝑜𝑔(𝑛)𝑛≤𝑥 ∏
𝑢(𝑛−𝑔𝑖−2)

𝑙𝑜𝑔(𝑛−𝑔𝑖)
,𝑘−1

𝑖=1  (3.4.6) 

or equivalently:  

 𝜋(𝑔1,𝑔2,…,𝑔𝑘−1)(𝑥) ~ ∑
1

𝑙𝑜𝑔(𝑛)2+𝑔𝑘−1≤𝑛≤𝑥 ∏
1

𝑙𝑜𝑔(𝑛−𝑔𝑖)
.𝑘−1

𝑖=1  (3.4.7) 

Integral Approximation: Since the above summation diverges as 𝑥 → ∞, we apply the Euler-Maclaurin formula 

to approximate it by an integral:  

 𝜋(𝑔1,𝑔2,…,𝑔𝑘−1)(𝑥) ~ ∫
1

𝑙𝑜𝑔(𝑡)

𝑥

2+𝑔𝑘−1
∏

1

𝑙𝑜𝑔(𝑡−𝑔𝑖)

𝑘−1
𝑖=1 𝑑𝑡. (3.4.8) 

3.5. Prime Gap Function 

The prime gap function measures the difference between two successive prime numbers. Formally, it is defined 

as:  

 𝑔𝑛 = 𝑝𝑛+1 − 𝑝𝑛 = 𝜋−1(𝑛 + 1) − 𝜋−1(𝑛), (3.5.1) 

where 𝑔𝑛 is the prime gap function, 𝑝𝑛 is the 𝑛 -th prime, and 𝜋−1(𝑛) is the inverse prime counting function. 
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As discussed in the previous section, the prime gap function is related to the prime counting function 𝜋(𝑛) via 

the equation:  

 𝑔𝑘 = ∑ sinc∞
𝑛=0 (𝑘 − 𝜋(𝑛)) ~ 

𝑑𝜋−1(𝑥+1)

𝑑𝑥
|

𝑥=𝑘
. (3.5.2) 

Approximation Using the Prime Number Theorem: According to the prime number theorem, the prime 

counting function can be approximated as:  

 𝜋(𝑛) ~ Li(𝑛) = ∫
1

𝑙𝑜𝑔(𝑡)

𝑛

2
𝑑𝑡. (3.5.3) 

Similarly, the inverse prime counting function is approximated as:  

 𝜋−1(𝑛) ~ Li−1(𝑛). (3.5.4) 

Thus, the prime gap function can be approximated by:  

 𝑔𝑘  ~ 
𝑑Li−1(𝑥+1)

𝑑𝑥
|

𝑥=𝑘
. (3.5.5) 

3.5.1. Asymptotic Approximation 

We proceed with a more detailed asymptotic analysis of the prime gap function given by (3.5.5). Starting with:  

 𝑔𝑘  ~ 
𝑑Li−1(𝑥+1)

𝑑𝑥
|

𝑥=𝑘
 ~ 

𝑑Li−1(𝑥)

𝑑𝑥
|

𝑥=𝑘
,  𝑘 → ∞. (3.5.6) 

Using the derivative of the inverse function, as described in [6], we obtain:  

 𝑔𝑘  ~ 
𝑑𝑦

𝑑Li(𝑦)
|

𝑦=Li−1(𝑘)
. (3.5.7) 

Substituting 𝑑Li(𝑦)/𝑑𝑦 ~ 𝑙𝑜𝑔( 𝑦), we find:  

 𝑔𝑘  ~ 𝑙𝑜𝑔( 𝑦)|𝑦=Li−1(𝑘). (3.5.8) 

Differential Equation for the Inverse Logarithmic Integral: Consider the differential equation for the inverse 

logarithmic integral:  

 
𝑑Li−1(𝑥)

𝑑𝑥
= 𝑙𝑜𝑔 (∫

𝑑Li−1(𝑥)

𝑑𝑥
𝑑𝑥). (3.5.9) 

Renaming 𝑡 =
𝑑Li−1(𝑥)

𝑑𝑥
, the solution to this equation is:  

 ∫
𝑒𝑢

𝑢

𝑡

𝑎
𝑑𝑢 = 𝑥 + 𝑐1. (3.5.10) 

Since 𝑡: 𝑔𝑘, we deduce:  

 ∫
𝑒𝑢

𝑢

𝑔𝑘

𝑎
𝑑𝑢 ~ 𝑘 + 𝑐1. (3.5.11) 

Applying the initial condition:  

 ∫
𝑒𝑢

𝑢

𝑔𝑘

1
𝑑𝑢 ~ 𝑘, (3.5.12) 

and assuming the Riemann Hypothesis, combined with the results from [8], the prime gap function can be further 

approximated as:  
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where 𝐸−1(𝑘) is the inverse of the integral defined in (3.5.12).  

4. Applications of Inversion Using Conformal Mapping 

4.1. The von Mangoldt Function 

To compute the von Mangoldt function 𝛬(𝑘), we use the integral representation:  

 𝛬(𝑘) =
1

2𝜋𝑖
∮

𝑘𝑙𝑜𝑔(𝑧)

𝑧
𝐷

𝐶
(𝛬, 𝑙𝑜𝑔( 𝑧))𝑑𝑧, (4.1.1) 

where 𝐷(𝛬, 𝑙𝑜𝑔( 𝑧)) is the Dirichlet series of the von Mangoldt function, given by:  

 𝐷(𝛬, 𝑙𝑜𝑔( 𝑧)) = −
𝜁′(𝑙𝑜𝑔(𝑧))

𝜁(𝑙𝑜𝑔(𝑧))
. (4.1.2) 

As detailed in [4], this series can be expressed as:  

 −
𝜁′(𝑙𝑜𝑔(𝑧))

𝜁(𝑙𝑜𝑔(𝑧))
=

1

𝑙𝑜𝑔(𝑧)−1
− ∑

1

𝑙𝑜𝑔(𝑧)−𝜌
,𝜁(𝜌)=0  (4.1.3) 

where 𝜌 denotes the zeros of the zeta function in the critical strip, including the trivial zeros 𝜌 = −2𝑚,  𝑚 ∈ 𝑁. 

Contour Integration and Mapping: To evaluate the integral, we consider the branch cut contour at [0,2𝜋) using 

the keyhole contour 𝐶, illustrated in Figure 1. 

 

Figure 1: Keyhole contour for evaluating 𝛬(𝑘). 

The exponential function maps the real numbers to the interval (0, +∞). Consequently: - The pole at 𝑙𝑜𝑔( 𝑧) = 1 

and the trivial zeros are mapped to this line, which the contour 𝐶 excludes. - Nontrivial zeros, having an imaginary 

part, are mapped to circles inside 𝐶. 

The imaginary parts of the nontrivial zeros lie in the set 𝐷, defined as:  

 𝐷 = {𝑤 ∈ 𝑅/2𝜋𝑍: 𝜁(𝜌) = 0,  0 < ℜ(𝜌) < 1,  𝑤 = ℑ(𝜌) + 2𝜋𝑚,  𝑚 ∈ 𝑍,  0 ≤ 𝑤 < 2𝜋}. (4.1.4) 

For brevity, we use the fractional part notation:  

gk ~ 
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 𝑤 = 2𝜋 {
ℑ(𝜌)

2𝜋
}, (4.1.5) 

where {⋅} denotes the fractional part. 

Using the residue theorem [6], the integral evaluates as:  
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which simplifies to:  
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 (4.1.7) 

4.2. Prime Characteristic Function 

Using conformal mapping, the prime characteristic function is expressed as:  

 𝜒𝑃(𝑛) =
1

𝑙𝑜𝑔(𝑛)

1

2𝜋𝑖
∮

𝐹(𝑛;𝑙𝑜𝑔(𝑧))

𝑧𝐶
(−

𝜁′(𝑙𝑜𝑔(𝑧))

𝜁(𝑙𝑜𝑔(𝑧))
)𝑑𝑧. (4.2.1) 

Applying the same techniques as for 𝛬(𝑘), we deduce:  
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 (4.2.2) 

4.3. Mobius Function 

Similarly, for the Mobius function 𝜇(𝑘), we use the integral:  

 𝜇(𝑘) =
1

2𝜋𝑖
∮

𝑘𝑙𝑜𝑔(𝑧)

𝑧𝐶
𝐷(𝜇, 𝑙𝑜𝑔( 𝑧))𝑑𝑧, (4.3.1) 

where the Dirichlet series of the Mobius function is:  

 𝐷(𝜇, 𝑙𝑜𝑔( 𝑧)) =
1

𝜁(𝑙𝑜𝑔(𝑧))
. (4.3.2) 

The integral evaluates as:  

 

.
)(

=)(
)(

1<)(<0
0=)( 





 

+




iwk

k

 (4.3.3) 

5. Proof of Errors for Prime Functions 

5.1. Prime Characteristic Function 

According to [13], the error in the prime counting function 𝜋(𝑥) compared to the logarithmic integral li(𝑥), under 

the assumption of the Riemann Hypothesis, is bounded by:  

 |𝜋(𝑥) − li(𝑥)| ≤ √𝑥
𝑙𝑜𝑔 𝑥

8𝜋
. (5.1.1) 

Equivalently, this can be expressed using big-𝑂 notation as:  
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 𝜋(𝑥) = li(𝑥) + 𝑂(√𝑥 𝑙𝑜𝑔 𝑥). (5.1.2) 

As 𝑥 → ∞, applying the average order theorem yields the following estimate:  

 
𝜋(𝑥)

𝑥
=

li(𝑥)

𝑥
+ 𝑂 (

𝑙𝑜𝑔 𝑥

√𝑥
). (5.1.3) 

Since 
𝜋(𝑛)

𝑛
 ~ 𝜒𝑃(𝑛) and 

li(𝑛)

𝑛
 ~ 

1

𝑙𝑜𝑔 𝑛
, it follows that:  

 𝜒𝑃(𝑛) =
1

𝑙𝑜𝑔 𝑛
+ 𝑂 (

𝑙𝑜𝑔 𝑛

√𝑛
) ,  𝑛 → ∞. (5.1.4) 

5.2. Prime Pair Counting Function 

The prime pair counting function 𝜋𝑔(𝑥) is defined as:  

 𝜋𝑔(𝑥) = ∑ 𝜒𝑃𝑛≤𝑥 (𝑛)𝜒𝑃(𝑛 − 𝑔). (5.2.1) 

Using the approximation for the prime characteristic function, this becomes:  

 𝜋𝑔(𝑥) = ∑ (
1

𝑙𝑜𝑔 𝑛
+ 𝑂 (

𝑙𝑜𝑔 𝑛

√𝑛
))2+𝑔≤𝑛≤𝑥 (

1

𝑙𝑜𝑔(𝑛−𝑔)
+ 𝑂 (

𝑙𝑜𝑔(𝑛−𝑔)

√𝑛−𝑔
)). (5.2.2) 

Expanding the terms and simplifying, we have:  

 𝜋𝑔(𝑥) = ∑
1

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(𝑛−𝑔)2+𝑔≤𝑛≤𝑥 + ∑ 𝑂2+𝑔≤𝑛≤𝑥 (
𝑙𝑜𝑔 𝑛

√𝑛
) 𝑂 (

𝑙𝑜𝑔(𝑛−𝑔)

√𝑛−𝑔
). (5.2.3) 

This simplifies further to:  

 𝜋𝑔(𝑥) = ∑
1

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(𝑛−𝑔)2+𝑔≤𝑛≤𝑥 + (𝑥 − 2 − 𝑔)𝑂 (
𝑙𝑜𝑔 𝑥

√𝑥

𝑙𝑜𝑔(𝑥−𝑔)

√𝑥−𝑔
). (5.2.4) 

Using the properties of big-𝑂 notation, we arrive at:  

 𝜋𝑔(𝑥) = ∑
1

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(𝑛−𝑔)
+2+𝑔≤𝑛≤𝑥 𝑂 (√𝑥 − 𝑔

𝑙𝑜𝑔 𝑥 𝑙𝑜𝑔(𝑥−𝑔)

√𝑥
). (5.2.5) 

5.3. Goldbach Prime Pair Function 

The Goldbach prime pair function 𝐺2(𝑚) is given by:  

 𝐺2(𝑚) = ∑ 𝜒𝑃(𝑛)𝜒𝑃(2𝑚 − 𝑛).2≤𝑛  (5.3.1) 

Using the approximation for the prime characteristic function, we have:  

 𝐺2(𝑚) = ∑ (
1

𝑙𝑜𝑔 𝑛
+ 𝑂 (

𝑙𝑜𝑔 𝑛

√𝑛
))2𝑚−2

𝑛=2 (
1

𝑙𝑜𝑔(2𝑚−𝑛)
+ 𝑂 (

𝑙𝑜𝑔(2𝑚−𝑛)

√2𝑚−𝑛
)). (5.3.2) 

After expanding and simplifying, this becomes:  

 𝐺2(𝑚) = ∑
1

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(2𝑚−𝑛)

2𝑚−2
𝑛=2 + ∑ 𝑂2𝑚−2

𝑛=2 (
𝑙𝑜𝑔 𝑛

√𝑛
) 𝑂 (

𝑙𝑜𝑔(2𝑚−𝑛)

√2𝑚−𝑛
). (5.3.3) 

Simplifying further:  

 𝐺2(𝑚) = ∑
1

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(2𝑚−𝑛)

2𝑚−2
𝑛=2 + (2𝑚 − 4)𝑂 (

𝑙𝑜𝑔(2𝑚−2) 𝑙𝑜𝑔 2

√2𝑚−2√2
). (5.3.4) 

Using the properties of big-𝑂 notation, the result is:  
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 𝐺2(𝑚) ~ ∑
1

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(2𝑚−𝑛)

2𝑚−2
𝑛=2 + 𝑂(√2𝑚 − 2 𝑙𝑜𝑔( 2𝑚 − 2)). (5.3.5) 

5.4. Prime Gap Function 

As shown in [8], the 𝑛 -th prime 𝑝𝑛 satisfies:  
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where Li−1 is the inverse logarithmic integral. Applying the average order theorem, we obtain:  
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Since 
𝑝𝑛

𝑛
 ~ 𝑔𝑛 and 

Li
−1

(𝑛)

𝑛
 ~ 𝐸−1(𝑛), it follows that:  
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6. Conclusions 

In this paper, we have presented systematic methods for inverting Dirichlet series and deriving asymptotic 

approximations for the associated integral kernels. These techniques provide valuable tools for analyzing a wide 

range of arithmetic functions, particularly those connected to prime numbers, divisors, and related indicators. 

We began by investigating inversion techniques using both integral kernels and conformal mapping, providing 

general formulations and detailed derivations. The asymptotic behavior of the integral kernels was established 

using methods such as the Riemann-Lebesgue lemma and properties of the sinc function. These approximations 

allowed us to simplify the inversion process significantly as the parameters approached infinity. 

Using the Average Order Theorem as a foundation, we demonstrated numerous applications of these results to 

classical problems in analytic number theory. Specifically, we applied the methods to approximate key arithmetic 

functions, including:  

• The prime characteristic function 𝜒𝑃(𝑛) and its connection to the Prime Number Theorem.  

• The prime gap function 𝑔𝑘, which measures the gaps between consecutive primes.  

• The prime factor counting function 𝜔(𝑛), whose behavior aligns with the Hardy-Ramanujan theorem.  

• The divisor characteristic function 1𝑚|𝑛 and divisor counting function 𝑑(𝑛), including their asymptotic estimates.  

• The greatest common divisor indicator function 1𝑔𝑐𝑑(𝑘,𝑛)=𝑚 and its generalizations.  

Furthermore, we derived approximations for the inverse prime counting function 𝜋−1(𝑘), connecting it to prime 

gaps and Stieltjes integrals involving the prime counting function 𝜋(𝑥). These results highlight the utility of Dirichlet 

series inversion in addressing problems involving primes and other arithmetic functions. 

The techniques developed in this work provide a robust framework for approximating arithmetic functions and 

analyzing their asymptotic properties. Future research can explore extensions of these methods to other classes of 

series, such as Mellin or Fourier series, and their applications to broader areas of analytic number theory. 

Additionally, improving the error bounds of the approximations derived here remains a promising direction for 

further investigation. 
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Final Remarks 

The inversion of Dirichlet series, combined with asymptotic kernel approximations, bridges a gap between 

classical analytic methods and modern computational approaches. By providing concrete applications to prime 

number theory, this work demonstrates the enduring significance of Dirichlet series as a powerful tool in 

understanding the structure and distribution of primes and other number-theoretic functions. 
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