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ABSTRACT 

The aim of the present article is to study the nonlinear wave equation with 

averaged damping in high-order spaces. The concavity method was 

developed to prove the upper bound of the blowing-up time. To compensate 

for the lack of the classic Poincaré’s inequality in an unbounded domain, we 

proposed the density function to construct and defined a weighted space.  
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1. Introduction and Position of Problem 

Let 𝑥 ∈ 𝑹𝑛, 𝑛 > 3𝜅 be a space-independent variable and let 𝑡 ∈ [0, +∞) be the times, and for simplicity, we denote 

the unknowns 𝑢(𝑥, 𝑡) = 𝑢, 𝑢′(𝑥, 𝑡) = 𝑢′, 𝑢′ =
𝑑𝑢

𝑑𝑡
 and 𝑢′′ =  

𝑑2𝑢

𝑑𝑡2 when there is no confusion. The exponent 𝜅 will be 

specified later. In this article we consider the initial value problem  

𝑢′′ + (−1)𝜅 ∅(𝑥) Δ𝜅 𝑢 + 𝑣 ‖𝑢′‖
𝐿𝜌

𝑞−2
(𝐑𝑛)

𝑞−2
 𝑢′ = |𝑢|𝑝−2𝑢 (1.1) 

where 𝜅 ≥ 1, 𝑞, 𝑞 > 2, 𝜈 ≥ 0. Equation (1.1) is an important physical model, especially when it comes with nonlinear 

averaged damping. It is a prototype for a non-linear partial differential equation of hyperbolic type in higher-order 

spaces equipped with the next initial conditions.  

𝑢(𝑥, 0) = 𝑢0(𝑥) ∈ D𝜅,2(𝐑𝑛),  𝑢′(𝑥, 0) = 𝑢1(𝑥) ∈ 𝐿𝜌
2 (𝐑𝑛). (1.2) 

Here, we assume that 𝜑 ∈ 𝐶(𝑹, 𝑹) satisfies  

(𝜑(𝑥))−1 = 𝜌(𝑥),  𝜑(𝑥) > 0. (1.3) 

The weighted spaces 𝐷𝜅,2 and 𝐿𝜌
2  are introduced in Definition 2.2 and the density function 𝜌 ∈ 𝐶(𝑹𝑛, 𝑹) satisfies  

𝜌(𝑥) > 0,  𝜌(𝑥) ∈ 𝐶0,�̃�(𝐑𝑛),  𝑛 ≥ 2𝜅, (1.4) 

where 0 ≤ �̃� ≤ 1 and 𝜌 ∈ 𝐿𝑠(𝐑𝑛) ∩ 𝐿∞(𝐑𝑛) with 𝑠 =
𝑛

𝜅
. We mention that  

|∇𝜅𝑢|2 = (Δ𝜅/2𝑢)2,  𝑓𝑜𝑟 𝑝𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝜅, 

and  

|∇𝜅𝑢|2 = |∇(Δ(𝜅−1)/2𝑢)|2,  𝑓𝑜𝑟 𝑜𝑑𝑑 𝜅, 

where  

|∇𝑢|2 = ∑ (
∂𝑢

∂𝑥𝑖

)
2

,  Δ𝑢 = ∑
∂2𝑢

∂𝑥𝑖
2 .

𝑛

𝑖=1

𝑛

𝑖=1

 

For 𝜅 = 2, in an open bounded domain, the authors in [16] proposed  

𝑢′′ +  Δ2𝑢 + ‖𝑢′‖𝑙  𝑢′ = |𝑢|𝑝−2𝑢 (1.5) 

Equation (1.5) is well studied, where the global existence in time is proved and also the blow-up in both negative 

and positive initial energy is obtained. Recent results for problems with localized nonlinear damping are proposed 

in [1, 10, 3].  

In 𝑹𝑛, the article [8] considered a wave equation with frictional damping and a nonlinear source in Kirchhoff type 

as  

𝑢′′ +  ∅(𝑥) ‖∇𝑢‖2 Δ𝑢 + 𝛿𝑢′ = |𝑢|𝑎𝑢 (1.6) 

with non-positive initial energy, the authors proved that in finite time (well defined) the solution blows up. The 

results are obtained in weighted spaces. The function spaces with density and their properties are defined and used 

in [5, 13, 12]. The operator 𝛥𝜅 ,  𝜅 > 1 and its properties are found in [9] and used in [14] for a coupled system in an 

open bounded domain 𝛺. The blow-up phenomena are well studied in [7, 4, 6, 11]. Our article is structured as 

follows. In Section 2, we introduce some useful results related to the weighted spaces, some useful tools, and state 

the local existence. Our main result regarding the blow-up of the solution is stated and proved in section 3.  
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2. Preliminaries and Basic Knowledge 

We introduce certain results for the weighted spaces and different embeddings in the high-order spaces.  

Definition 2.1 We say that the functions  

𝑢 ∈ 𝐶([0, 𝑇]; 𝐷𝜅,2(𝑹𝑛)) ∩ 𝐶1([0, 𝑇]; 𝐿𝜌
2 (𝑹𝑛)), 

with initial data given in (1.2) are a distributed solution to (1.1) on [0, 𝑇], if  

∫ 𝜌𝑢′𝜓(𝑥)𝑑𝑥
𝑹𝑛

+ ∫ [∫ 𝛻𝜅𝑢(𝑥, 𝑠)𝛻𝜅𝜓(𝑥)𝑑𝑥 + 𝜈||𝑢′(𝑠)||𝑞−2

𝑹𝑛
∫ 𝑢′(𝑥, 𝑠)𝜓(𝑥)𝑑𝑥

𝑹𝑛
𝜌] 𝑑𝑠

𝑡

0

 

= ∫ 𝜌𝑢1𝜓(𝑥)𝑑𝑥 + ∫ ∫ 𝜌|𝑢|𝑝−2𝑢(𝑥, 𝑠)𝜓(𝑥)𝑑𝑥𝑑𝑠,
𝑹𝑛

𝑡

0𝑹𝑛
 

(2.1) 

holds for every test function 𝜓 ∈ 𝐷𝜅,2(𝑹𝑛), ∀𝑡 ∈ [0, 𝑇].  

Definition 2.2 [13] The function spaces of our problem and its norm are defined as follows:  

𝐷𝜅,2(𝑹𝑛) = {𝑤 ∈ 𝐿2𝑛/(𝑛−2𝜅)(𝑹𝑛): 𝛻𝜅𝑤 ∈ 𝐿2(𝑹𝑛),  𝑛 > 3𝜅}, (2.2) 

and the space 𝐿𝜌
2 (𝑹𝑛) is to be the closure of 𝐶0

∞(𝑹𝑛) functions with respect to the inner product  

(𝑤, 𝑣)𝐿𝜌
2 (𝑹𝑛) = ∫ 𝜌𝑤𝑣𝑑𝑥.

𝑹𝑛
 

For 𝑞 ∈ (1, ∞), if 𝑤 is a measurable function on 𝑹𝑛, we define  

‖𝑤‖
𝐿𝜌

𝑞
(𝑹𝑛) = (∫ 𝜌|𝑤|𝑞𝑑𝑥

𝑹𝑛
)

1/𝑞

, (2.3) 

and  

‖𝑤‖𝐿𝑞(𝑹𝑛) = (∫ |𝑤|𝑞𝑑𝑥
𝑹𝑛

)

1/𝑞

. (2.4) 

Then 𝐷𝜅,2(𝑹𝑛) can be embedded continuously in 𝐿2𝑛/(𝑛−2𝜅)(𝑹𝑛), i.e. ∃𝑘 > 0 where  

‖𝑤‖
𝐿2𝑛/(𝑛−2𝜅)(𝑹𝑛) ≤ 𝑘‖𝑤‖𝐷𝜅,2(𝑹𝑛). (2.5) 

The generalized Poincaré's inequality will be used  

∫ |𝛻𝜅𝑤|2𝑑𝑥 ≥ 𝛾
𝑹𝑛

∫ 𝜌𝑤2𝑑𝑥,  𝑤 ∈ 𝐶0
∞

𝑹𝑛
(𝑹𝑛),  𝜌 ∈ 𝐿𝑛/𝜅(𝑹𝑛), (2.6) 

where 𝛾 = 𝑘−2‖𝜌‖
𝐿𝑛/𝜅(𝑹𝑛)
−1 . 

The Hilbert space 𝐿𝜌
2 (𝑹𝑛) is separable and  

(𝑤, 𝑤)𝐿𝜌
2 (𝑹𝑛) = ‖𝑤‖

𝐿𝜌
2 (𝑹𝑛)

2 , 

consist of all 𝑤 where  

‖𝑤‖
𝐿𝜌

𝑞
(𝑹𝑛) < ∞,  1 < 𝑞 < +∞. 

Let  
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𝜌 ∈ 𝐿𝑛/𝜅(𝑹𝑛) ∩ 𝐿∞(𝑹𝑛), 

then the embedding 𝐷𝜅,2(𝑹𝑛) ⊂ 𝐿𝜌
2 (𝑹𝑛) is compact and we have  

‖𝑤‖𝐿𝜌
2 (𝑹𝑛) ≤ ‖𝜌‖𝐿𝑛/𝜅(𝑹𝑛)‖𝛻𝜅𝑤‖𝐿2(𝑹𝑛),  ∀𝑤 ∈ 𝐷2,2(𝑹𝑛), (2.7) 

where ‖𝜌‖𝐿𝑛/𝜅(𝑹𝑛) = 𝑐∗ > 0.  

Lemma 2.3 [ [13], Lemma 3.1] Let 𝜌 satisfy (1.4), then ∀𝑤 ∈ 𝐷𝜅,2(𝑹𝑛)  

‖𝑤‖
𝐿𝜌

𝑞
(𝑹𝑛) ≤ ‖𝜌‖𝐿𝑠(𝑹𝑛)‖𝛻𝜅𝑤‖𝐿2(𝑹𝑛), (2.8) 

where  

𝑠 =
2𝑛

2𝑛 − 𝑞𝑛 + 𝑞𝜅
, 

for all  

{

2 ≤ 𝑞 < +∞  𝑖𝑓𝑛 = 𝜅, 2𝜅

2 ≤ 𝑞 ≤
2𝑛

𝑛 − 2𝜅
 𝑖𝑓, 𝑛 ≥ 3𝜅.

 (2.9) 

For the operator (−1)𝜅𝜑𝛥𝜅, we consider for all 𝜈 ∈ 𝐿𝜌
2 (𝑹𝑛)  

(−1)𝜅𝜑(𝑥)𝛥𝜅𝑢(𝑥) = 𝜈(𝑥),  𝑥 ∈ 𝑹𝑛 , 

where  

((−1)𝜅𝜑𝛥𝜅 , 𝑤)𝐿𝜌
2 (𝑹𝑛) = ∫ 𝛻𝜅𝑢𝛻𝜅𝑤𝑑𝑥,

𝑹𝑛
 

without any boundary condition.  

Remark 2.4 The operator 𝛹𝛥𝜅 is self-adjoint, symmetric, and strongly monotone in 𝐿𝜈
2 (𝑹𝑛).  

The energy functional associated with the problem (1.1)-(1.2) is defined by  

𝐸(𝑡) =
1

2
||𝑢′||𝐿𝜌

2 (𝑹𝑛)
2 +

1

2
||𝛻𝜅𝑢||2 −

1

𝑝
||𝑢||

𝐿𝜌
𝑝

(𝑹𝑛)

𝑝
,  0 ≤ 𝑡 < 𝑡max, (2.10) 

and  

𝐸(0) =
1

2
||𝑢1||𝐿𝜌

2 (𝑹𝑛)
2 +

1

2
||𝛻𝜅𝑢0||2 −

1

𝑝
||𝑢0||

𝐿𝜌
𝑝

(𝑹𝑛)

𝑝
, (2.11) 

satisfy  

𝐸(𝑡) + ∫ ||𝑢′(𝑠)||
𝐿𝜌

𝑞
(𝑹𝑛)

𝑞
𝑡

0

𝑑𝑠 = 𝐸(0),  0 ≤ 𝑡 < 𝑡max. (2.12) 

We state the local existence result where its proof is similar to the techniques in [2, 15].  

Theorem 2.5 If 𝑢0 ∈ 𝐷𝜅,2(𝑹𝑛) and 𝑢1 ∈ 𝐿𝜌
2 (𝑹𝑛) such that  

(−1)𝜅𝜑(𝑥)𝛥𝜅𝑢0 + 𝜈||𝑢1||
𝐿𝜌

𝑞−2
(𝑹𝑛)

𝑞−2
𝑢1 ∈ 𝐿2(𝑹𝑛), 

Suppose that 𝑞 > 2, 𝑝 satisfies  
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{

2 ≤ 𝑝 < +∞  𝑖𝑓𝑛 = 𝜅, 2𝜅

2 ≤ 𝑝 ≤
4𝜅 − 𝑛

𝑛 − 2𝜅
 𝑖𝑓, 𝑛 ≥ 3𝜅.

 (2.13) 

then there exists 𝑡max ≤ +∞ such that (1.1)-(1.2) admit a unique generalized local solution 𝑢.  

3. Finite Time Blow-up 

In this section, we prove the blow-up results for the solution of problem (1.1)-(1.2) with the concavity method.  

Theorem 3.1 Suppose that 𝑞 > 2, 𝑝 satisfies  

2 ≤ 𝑝 ≤
4𝜅 − 𝑛

𝑛 − 2𝜅
 𝑖𝑓, 𝑛 ≥ 3𝜅. (3.1) 

Then, for 𝐸(0) = −𝑟,  𝑟 > 0, the weak solution 𝑢 cannot be extended to a maximal solution in [0, 𝑡𝑚𝑎𝑥) such that 

either 𝑡𝑚𝑎𝑥 = +∞, that is, the solution of the problem blows up for 0 < 𝑡max < 𝑠0, where 𝑠0 is given in (3.15). i.e., the 

local solution satisfies  

.=||||||||lim
22

)(2

max

+







+

→

uu nLtt



 R

 

(3.2) 

Proof 3.2 Let 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥] and the constants 𝑡𝑚𝑎𝑥 , 𝑟, 𝑠 > 0 will be specified later. The concavity method is based 

on the construction and the properties of the functional  

𝛼(𝑡) = ∫ 𝜌|𝑢|2𝑑𝑥 + 𝜈
𝑹𝑛

(∫ ||𝑢′||
𝐿𝜌

𝑞−2
(𝑹𝑛)

𝑞−2
𝑡

0

∫ 𝜌|𝑢|2𝑑𝑥𝑑𝑠
𝑹𝑛

+ (𝑡𝑚𝑎𝑥 − 𝑡) ∫ 𝜌|𝑢0|2𝑑𝑥
𝑹𝑛

) + 𝑟(𝑡 + 𝑠)2 > 0. (3.3) 

Noting here that 𝛼(0) > 0. Let  

𝛽(𝑡) = (∫ 𝜌|𝑢|2𝑑𝑥 + 𝜈
𝑹𝑛

∫ ||𝑢′||
𝐿𝜌

𝑞−2
(𝑹𝑛)

𝑞−2
𝑡

0

∫ 𝜌|𝑢|2𝑑𝑥𝑑𝑠
𝑹𝑛

+ 𝑟(𝑡 + 𝑠)2) 

× (∫ 𝜌|𝑢′|2𝑑𝑥
𝑹𝑛

+ 𝜈 ∫ ∫ 𝜌|𝑢′|𝑞𝑑𝑥𝑑𝑠
𝑹𝑛

+ 𝑟)
𝑡

0

 

−(∫ 𝜌𝑢𝑢′𝑑𝑥
𝑹𝑛

+ 𝜈 ∫ ||𝑢′||
𝐿𝜌

𝑞−2
(𝑹𝑛)

𝑞−2
𝑡

0

∫ 𝜌𝑢𝑢′𝑑𝑥𝑑𝑠
𝑹𝑛

+ 𝑟(𝑡 + 𝑠))2. (3.4) 

Then  

𝛼′(𝑡) = 2 ∫ 𝜌𝑢𝑢′𝑑𝑥
𝑹𝑛

+ 2||𝑢′||
𝐿𝜌

𝑞−2
(𝑹𝑛)

𝑞−2
𝜈(∫ ∫ 𝜌𝑢𝑢′𝑑𝑥𝑑𝑠

𝑹𝑛
)

𝑡

0

+ 2𝑟(𝑡 + 𝑠), (3.5) 

and  

𝛼′′(𝑡) = 2 ∫ 𝜌𝑢𝑢′′𝑑𝑥
𝑹𝑛

+ 2 ∫ 𝜌𝑢′2𝑑𝑥 + 2
𝑹𝑛

||𝑢′||
𝐿𝜌

𝑞−2
(𝑹𝑛)

𝑞−2
𝜈 (∫ 𝜌𝑢𝑢′𝑑𝑥

𝑹𝑛
) + 2𝑟 (3.6) 

where we can choose 𝑠 large enough to have 𝛼′(0) > 0. Let 𝑢 be the solution of (1.1)-(1.2). By multiplication of (1.1) 

by 𝜌𝑢 and integrating over 𝑹𝑛 to get  

∫ 𝜌𝑢𝑢′′𝑑𝑥
𝑹𝑛

+ ∫ |𝛻𝜅𝑢|2 𝑑𝑥 + 𝑣
𝑹𝑛

||𝑢′||
𝐿𝜌

𝑞−2
(𝑹𝑛)

𝑞−2
 .

1

2
 

𝑑

𝑑𝑡
 ∫ 𝜌|𝑢|2 𝑑𝑥 = ∫ 𝜌|𝑢|𝑝 𝑑𝑥

𝑹𝑛𝑹𝑛
 (3.7) 

By (3.6), we have  



Blow-up Time Estimate for Nonlinear Wave Equation with Averaged Damping Guidad and Bouhali 

 

9 

𝛼′′(𝑡) = −2 ∫ |𝛻𝜅𝑢|2 𝑑𝑥
𝑹𝑛

+ 2 ∫ 𝜌|𝑢|𝑝 𝑑𝑥
𝑹𝑛

+  2 ∫ 𝜌𝑢′2𝑑𝑥
𝑹𝑛

+ 2𝑟 (3.8) 

In addition, from (3.4) and (3.5), we have  

𝛽(𝑡) = (𝛼(𝑡) − 𝜈((𝑡𝑚𝑎𝑥 − 𝑡) ∫ 𝜌|𝑢0|2𝑑𝑥
𝑹𝑛

)) 

× (∫ 𝜌|𝑢′|2𝑑𝑥
𝑹𝑛

+ 𝜈 ∫ ∫ 𝜌|𝑢′|𝑞𝑑𝑥𝑑𝑠
𝑹𝑛

+ 𝑟) −
1

4
𝛼′(𝑡)2,

𝑡

0

 

or  

1

4
𝛼′(𝑡)2 = (𝛼(𝑡) − 𝜈((𝑡𝑚𝑎𝑥 − 𝑡) ∫ 𝜌|𝑢0|2𝑑𝑥))

𝑹𝑛
 

× (∫ 𝜌|𝑢′|2𝑑𝑥
𝑹𝑛

+ 𝜈 ∫ ∫ 𝜌|𝑢′|𝑞𝑑𝑥𝑑𝑠
𝑹𝑛

+ 𝑟) − 𝛽(𝑡).
𝑡

0

 

Since  

1

4
𝛼′(𝑡)2 ≤ 𝛼(𝑡) × (∫ 𝜌|𝑢′|2𝑑𝑥

𝑹𝑛
+ 𝜈 ∫ ∫ 𝜌|𝑢′|𝑞𝑑𝑥𝑑𝑠

𝑹𝑛
+ 𝑟),

𝑡

0

 

we have  

𝛼(𝑡)𝛼′′𝑝+2

4

′2

 (3.9) 

𝛼(𝑡)𝛼′′(𝑡) − 2 (
𝑝 + 2

4
) 𝛼′(𝑡)2 ≥ 𝛼(𝑡) (𝛼′′(𝑡) − (𝑝 + 2) (∫ 𝜌|𝑢′|2 𝑑𝑥

𝑹𝑛
+  𝑣 ∫ ∫ 𝜌|𝑢′|𝑞 𝑑𝑥

𝑹𝑛
𝑑𝑠 +  𝑟

𝑡

0

)) 

On the other hand, by (2.12) and (3.6), we have  

𝛼′′(𝑡) − (𝑝 + 2) (∫ 𝜌|𝑢′|2 𝑑𝑥
𝑹𝑛

+  𝑣 ∫ ∫ 𝜌|𝑢′|𝑞 𝑑𝑥
𝑹𝑛

𝑑𝑠 +  𝑟
𝑡

0

) 

≥ −𝑝(∫ 𝜌|𝑢′|2𝑑𝑥
𝑹𝑛

+ 𝐸(0) − 𝐸(𝑡) −
2

𝑝
∫ 𝜌|𝑢|𝑝𝑑𝑥

𝑹𝑛
+ 𝑟) − 2 ∫ |𝛻𝜅𝑢|2𝑑𝑥

𝑹𝑛
 

= −𝑝(𝐸(0) + 𝑟) +
𝑝 − 4

2
∫ |𝛻𝜅𝑢|2𝑑𝑥.

𝑹𝑛
 

(3.10) 

Taking 𝑟 = −𝐸(0) > 0. It means with negative initial energy, (3.10) takes the form  

𝛼′′(𝑡) − (𝑝 + 2) (∫ 𝜌|𝑢′|2 𝑑𝑥
𝑹𝑛

+  𝑣 ∫ ∫ 𝜌|𝑢′|𝑞 𝑑𝑥
𝑹𝑛

𝑑𝑠 −  𝐸(0)
𝑡

0

)  ≥  (
𝑝 − 4

2
) ∫ |𝛻𝜅𝑢|2𝑑𝑥

𝑹𝑛
 

Then (3.9) becomes  

𝛼(𝑡)𝛼′′(𝑡) − (
𝑝 + 2

4
) 𝛼′(𝑡)2 ≥ (

𝑝 + 4

2
) 𝛼(𝑡) ∫ |𝛻𝜅𝑢|2𝑑𝑥

𝑹𝑛
 

This ensures the concavity of the function 𝛼. In other words  

(𝛼(𝑡)
2−𝑝

4 )
′′

=  
𝑝 + 2

4
 𝛼(𝑡)

−(𝑝+6)

4  (𝛼(𝑡)𝛼′′(𝑡) −  
𝑝 + 2

4
 𝛼′(𝑡)2)  ≤ 0 3.11 
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We now choose 𝑡𝑚𝑎𝑥 such that  

𝑡𝑚𝑎𝑥 ≥
4

(𝑝 − 2)

𝛼(0)

𝛼′(0)
. (3.12) 

As the graph of any concave function lies below any tangent line of the function, we have  

𝛼(𝑡) ≥ (
4𝛼(0)

𝑝+2

2

4𝛼(0) − (𝑝 − 2)𝛼′(0)𝑡
)

4

𝑝−2, (3.13) 

so ∃𝑇 ∈ (0, 𝑡𝑚𝑎𝑥] such that  

.=)||||(lim
0

2 + 
−→

dxdsudxu q

n

t

n
Tt


RR

 

At this stage, we found an upper bound for the finite time blow-up and then (3.2) is proved. 

We search now the finite time 𝑡𝑚𝑎𝑥. By (3.12), for 𝑡 = 0 in (3.3), (3.4), we have  

𝑇(𝑠) =
2(∫ 𝜌|𝑢0𝑹𝑛 |2𝑑𝑥 − 𝐸(0)𝑠2)

(𝑝 − 2)(∫ 𝜌𝑢0𝑢1𝑑𝑥
𝑹𝑛 + −𝐸(0)𝑠) − 2𝜈 ∫ 𝜌|𝑢1𝑹𝑛 |𝑞𝑑𝑥

≤ 𝑡𝑚𝑎𝑥 (3.14) 

We choose the minimum value of 𝑇(𝑠). Since  

𝑇′(𝑠) =
2(𝑝 − 2)𝐸2(0)𝑠2 + 4𝐸(0)𝑠[2𝜈 ∫ 𝜌|𝑢1|𝑞𝑑𝑥

𝑹𝑛 − (𝑝 − 2) ∫ 𝜌𝑢0𝑢1𝑑𝑥]
𝑹𝑛 + 2(𝑝 − 2)𝐸(0) ∫ 𝜌|𝑢0|2𝑑𝑥

𝑹𝑛

(𝑝 − 2)(∫ 𝜌𝑢0𝑢1𝑑𝑥
𝑹𝑛 − 𝐸(0)𝑠) − 2𝜈 ∫ 𝜌|𝑢1|𝑞𝑑𝑥

𝑹𝑛

. 

Then, the minimum value of 𝑇(𝑠) in (0,∞) can be taken for  

𝑠0 =
−1

𝐸(0)(𝑝 − 2)2
(((2𝜈 ∫ 𝜌|𝑢1|𝑞𝑑𝑥

𝑹𝑛
− (𝑝 − 2) ∫ 𝜌𝑢0𝑢1𝑑𝑥)2

𝑹𝑛
− (𝑝 − 2)2𝐸(0) ∫ 𝜌|𝑢0|2𝑑𝑥)

1

2

𝑹𝑛
 

+2𝜈 ∫ 𝜌|𝑢1|𝑞𝑑𝑥
𝑹𝑛

− (𝑝 − 2) ∫ 𝜌𝑢0𝑢1𝑑𝑥
𝑹𝑛

) 

(3.15) 

The proof of Theorem 3.1 is now completed.  
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