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ABSTRACT 

We present a new concept of Riemann-Liouville Fractional Sobolev Spaces in 

the context of time scale calculus in this paper. This novel method unifies 

continuous and discrete analysis by extending conventional fractional Sobolev 

space theory to dynamic domains. Our study’s primary contribution is the first 

description of 𝐿𝛥
𝑝
-representability in relation to time scales, which lays the 

groundwork for future advancements in fractional dynamic equations. Our 

findings offer novel ideas regarding fractional. 
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1. Introduction and Basic Concepts 

One of the most active and developing areas of contemporary mathematical investigations in the 17th century, 

and Riemann, Liouville, and Caputo’s seminal work subsequently formalized it. Fractional derivatives have proven 

highly effective in modeling complex physical and biological systems characterized by memory and hereditary 

behaviors, such as anomalous diffusion and viscoelasticity. 

The theory of time scales was first presented by Stefan Hilger [4] in 1988 with the goal of combining the analysis 

of discrete and continuous dynamic systems into a single analytical framework. A new discipline called dynamic 

equations on time scales has emerged as a result of this theory, which has made it possible to comprehend hybrid 

dynamic behaviors on a deeper level. 

Researchers like Bohner, Peterson [11, 12], and Atici have been working to include fractional calculus into the 

time scale framework since the early 2000s. Benchohra and Goodrich have since contributed to these efforts. New 

models and definitions for fractional dynamic equations on time scales were presented in these investigations. 

One major breakthrough was the generalization of Lebesgue integration on time scales, as detailed in the work 

of Cabada et al. [1], who demonstrated how the 𝛥 -integral can be expressed as a usual Lebesgue integral. 

Building upon this, the construction of Lebesgue spaces 𝐿𝛥
𝑝(𝑇, 𝑅) was established as a necessary step for 

analyzing 𝛥 -measurable functions. In this context, Benaissa et al. [2] investigated density problems in 𝐿𝛥
𝑝(𝑇, 𝑅) 

spaces, laying the groundwork for further functional analysis on time scales. 

As a natural extension, Sobolev spaces on time scales were studied to incorporate weak differentiability and 

variational structures. The approximation and density properties of such spaces were examined in depth by Ladrani 

et al. [5, 6] in their article Density Problems in Sobolev’s Spaces on Time Scales, where they provided key insights 

into the behavior of Sobolev-type embeddings. These cumulative contributions significantly advance the foundation 

for extending fractional Sobolev spaces on time scales, motivating the development presented in this current study. 

In this paper, we introduce a new definition of Riemann–Liouville fractional Sobolev spaces on time scales. We 

investigate their main properties and topological structure, focusing on how these spaces behave under the 

framework of fractional time-scale calculus. Special attention is given to their relationship with classical functional 

spaces defined on time scales. This study aims to extend the functional-analytic tools available for fractional 

dynamic equations in hybrid temporal settings. 

1.1. Fundamental Notions in Time Scale Calculus 

A time scale 𝑇 is an arbitrary nonempty closed subset of the real numbers 𝑅. The jump operators 𝜎, 𝜌: 𝑇 → 𝑅 are 

defined by: 

{

𝜎(𝑡) = 𝑖𝑛𝑓(𝑡,∞) ∩ 𝑇

𝜌(𝑡) = 𝑖𝑛𝑓(−∞, 𝑡) ∩ 𝑇.
, 

The point 𝑡 ∈ 𝑇 is left-dense, left-scattered, right-dense, right-scattered if  

𝜌(𝑡) = 𝑡,  𝜌(𝑡) < 𝑡,  𝜎(𝑡) = 𝑡,  𝜎(𝑡) > 𝑡, 

respectively. The graininess function 𝜇, for a time scale, is defined by: 

𝜇(𝑡) = 𝜎(𝑡) − 𝑡. 

For a function 𝜙:𝑇 → 𝑅, the function 𝜙𝜎 denotes 𝜙 ∘ 𝜎. The 𝛥 -derivative of 𝜙: 𝑇 → 𝑅 at point 𝑡 is defined by:  
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𝜙𝛥(𝑡) =

{
 
 

 
 𝑙𝑖𝑚
𝑠→𝑡

𝜙(𝑡) − 𝜙(𝑠)

𝑡 − 𝑠
, if𝑡isrightdense,

𝜙𝜎(𝑡) − 𝜙(𝑡)

𝜇(𝑡)
, if𝑡isrightscattered,

 

A function 𝜙: 𝑇 → 𝑅 is said to be rd-continuous if it is continuous at each right-dense point and if there exists a 

finite left limit in all left-dense points. The set of rd-continuous functions 𝜙: 𝑇 → 𝑅 is denoted by 𝐶𝑟𝑑(𝑇, 𝑅). 

We introduce the following notations that will be used throughout the paper :  

 [𝑎, 𝑏]𝑇 = [𝑎, 𝑏] ∩ 𝑇, 

 𝑎𝑛𝑑 

 𝑇𝜅 = 𝑇 − {𝑠𝑢𝑝 𝑇}. 

Definition 1 [11]A function 𝛷: [𝑎, 𝑏]𝑇 → 𝑅 is called a delta antiderivative function 𝜙: [𝑎, 𝑏]𝑇 → 𝑅 provided 𝛷 is 

continuous on [𝑎, 𝑏]𝑇, delta differentiable on [𝑎, 𝑏), and 𝛷𝛥(𝑡) = 𝜙(𝑡), for all 𝑡 ∈ [𝑎, 𝑏). Then, we define the 𝛥 -integral 

of 𝜙 from 𝑎 to 𝑏 by:  

∫
𝑏

𝑎

𝜙(𝑡)𝛥𝑡 = 𝛷(𝑏) − 𝛷(𝑎), 

we write for a function 𝜙 is integrable on [𝑎, 𝑏]𝑇 by: 

𝜙 ∈ 𝐿𝛥
1 ([𝑎, 𝑏]𝑇 , 𝑅). 

Proposition 1 [1]Let 𝜙 ∈ 𝐿𝛥
1 ([𝑎, 𝑏]𝑇 , 𝑅). Then  

∫
𝑏

𝑎

𝜙(𝑡)𝛥𝑡 = ∫
[𝑎,𝑏]𝑇

𝜙(𝑡)𝑑𝑡 + ∑

𝑡∈𝑅∩[𝑎,𝑏)

𝜇(𝑡)𝜙(𝑡), 

where  

𝑅 = {𝑡 ∈ 𝑇: 𝜎(𝑡) > 𝑡}, 

is at most countable.  

1.2. Some Properties of Function Spaces on Time Scales 

We also define the following function spaces: 

 𝐶1(𝑇, 𝑅) = {𝜙: 𝑇 → 𝑅:𝜙is𝛥 − differentiable on 𝑇𝜅 ,and 𝜙𝛥 ∈ 𝐶(𝑇𝜅 , 𝑅)}, 

 𝐶𝑟𝑑
1 (𝑇, 𝑅) = {𝜙: 𝑇 → 𝑅:𝜙is𝛥 − differentiable on 𝑇𝜅 ,and 𝜙𝛥 ∈ 𝐶𝑟𝑑(𝑇

𝜅 , 𝑅)}. 

Definition 2 [2]Let 𝑝 ∈ 1,+∞). The space 𝐿𝛥
𝑝
(𝑇, 𝑅) denotes the set of functions 𝜙: 𝑇 → 𝑅 such that  

𝑃𝜙𝑃
𝐿𝛥
𝑝
(𝑇,𝑅)

𝑝
= ∫

[𝑎,𝑏)∩𝑇

|𝜙(𝑠)|𝑝𝛥𝑠 < ∞, 

where 𝛥 denotes the delta integral on the time scale 𝑇. Equipped with this norm, 𝐿𝛥
𝑝
(𝑇, 𝑅) is a Banach space.  



Benaissa Cherif and Ladrani Mathematical Structures and Computational Modeling, 1, 2025 

 

54 

The diagram below presents the density result between functional spaces on time scales, as demonstrated by 

Benaissa et al. [2] of the referenced literature, 

𝐶𝑟𝑑(𝑇, 𝑅) → 𝐿𝛥
𝑝
(𝑇, 𝑅) → 𝐿𝛥

1 (𝑇, 𝑅)

↑
𝐶(𝑇, 𝑅)

↑
𝐶𝑟𝑑
1 (𝑇, 𝑅)

 

Definition 3 [1]Let 𝑝 ∈ 1,+∞). Define the Sobolev-type space 𝑊𝛥
1,𝑝
(𝑇, 𝑅) as the set of all 𝜙 ∈ 𝐿𝛥

𝑝
(𝑇, 𝑅) such that 

𝜙𝛥 ∈ 𝐿𝛥
𝑝
(𝑇, 𝑅), with the norm:  

𝑃𝜙𝑃
𝑊𝛥
1,𝑝
(𝑇,𝑅)

= 𝑃𝜙𝑃𝐿𝛥
𝑝
(𝑇,𝑅) + 𝑃𝜙

𝛥𝑃𝐿𝛥
𝑝
(𝑇,𝑅). 

Then, 𝑊𝛥
1,𝑝
(𝑇, 𝑅) is a Banach space.  

The diagram below illustrates the density result between functional spaces on time scales, as established by 

Benaissa et al. [1]. This result shows that the space of smooth functions with compact support is dense in Sobolev 

spaces on arbitrary time scales. Such a density property is a cornerstone in the theory of functional spaces, as it 

allows the approximation of Sobolev functions by smoother, more regular ones. This is crucial for both theoretical 

analysis and the development of numerical methods within the time scale framework. 

𝐶𝑟𝑑
1 (𝑇, 𝑅) → 𝑊𝛥

1,𝑝
(𝑇, 𝑅) → 𝐿𝛥

𝑝
(𝑇, 𝑅). 

1.3. Riemann–Liouville Fractional on Time Scales 

We recall that Benkhettou et al. [13] established existence and uniqueness results for Riemann–Liouville 

fractional equations on time scales. 

Definition 4 [13]Let 𝜙 ∈ 𝐿𝛥
1 ([𝑎, 𝑏]𝑇 , 𝑅) and 0 < 𝛼 < 1. Then the (left) fractional integral of order 𝛼 of 𝜙 is defined 

by:  

𝑎
𝑇𝐼𝑡
𝛼𝜙(𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝑠)𝛼−1

𝛤(𝛼)
𝜙(𝑠)𝛥𝑠, 

where 𝛤 is the gamma function.  

Definition 5 [13]Let 𝑡 ∈ 𝑇, 0 < 𝛼 < 1, and 𝜙: 𝑇 → 𝑅. The (left) Riemann–Liouville fractional derivative of order 𝛼 of 

𝜙 is defined by:  

𝑎
𝑇𝐷𝑡

𝛼𝜙(𝑡) = (∫
𝑡

𝑎

(𝑡 − 𝑠)−𝛼

𝛤(1 − 𝛼)
𝜙(𝑠)𝛥𝑠)

𝛥

= ( 𝑎
𝑇𝐼𝑡
1−𝛼𝜙(𝑡))

𝛥
. 

This party highlights the main contributions that exist in [8], which provides several corrections and 

improvements to the theory of fractional derivatives on time scales. 

Definition 6 (Beta function on time scales) [8]We will define the function 𝐵𝑎,𝑏
𝑇 (𝛼, 𝛽) as follows 

𝐵𝑎,𝑏
𝑇 (𝛼, 𝛽) = ∫

𝑏

𝑎

(𝑠 − 𝑎)𝛽−1(𝑏 − 𝑠)𝛼−1𝛥𝑠,  for𝛼 > 0 and 𝛽 > 0, 

where 

𝑇𝑎,𝑏 =
1

𝑏 − 𝑎
(𝑇 − 𝑎). 
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Lemma 1 [8]Let 𝜙 ∈ 𝐿𝛥
1 ([𝑎, 𝑏]𝑇 , 𝑅), the Riemann–Liouville 𝛥 -fractional integral satisfies  

( 𝑎
𝑇𝐼𝑡
𝛽
∘𝑎
𝑇 𝐼𝑡

𝛼)(𝜙(𝑡)) =
1

𝛤(𝛼 + 𝛽)
∫
𝑡

𝑎

𝜙(𝑢)(𝑡 − 𝑢)𝛽+𝛼−1
𝛽0,1
𝑇𝑢,𝑡(𝛽, 𝛼)

𝐵(𝛼, 𝛽)
𝛥𝑢, 

for 𝛼 > 0 and 𝛽 > 0.  

2. Main Results 

Now, we introduce and recall a new notion of 𝐿𝛥
𝑝
-representability adapted to the time scale framework, which 

extends the classical concept to a more general setting. 

Lemma 2 Let 𝑝 ∈ 1,+∞) and 𝛼 ∈ (0,1), such that 𝛼 −
1

𝑝
> 0, then  

𝑎
𝑇𝐼𝑡
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅)) ⊂ 𝐶𝑟𝑑(𝑇, 𝑅), 

and  

‖ 𝑎
𝑇𝐼𝑡
𝛼𝜙‖∞ ≤ 𝑐(𝑇, 𝛼, 𝑝)𝑃𝜙𝑃𝐿𝛥

𝑝
(𝑇,𝑅),  for  𝜙 ∈ 𝐿𝛥

𝑝
(𝑇, 𝑅), 

where  

𝑐(𝑇, 𝛼, 𝑝) =
(𝑏 − 𝑎)

𝛼−
1

𝑝

𝛤(𝛼)(𝑞(𝛼 − 1) + 1)
𝑝−1

𝑝

> 0. 

Proof. Let 𝜙 ∈ 𝐿𝛥
𝑝
(𝑇, 𝑅), by inequality of Hölder, we have 

 | 𝑎
𝑇𝐼𝑡
𝛼𝜙(𝑡)| ≤ ∫

𝑡

𝑎

(𝑡−𝑠)𝛼−1

𝛤(𝛼)
|𝜙(𝑠)|𝛥𝑠 

 ≤
1

𝛤(𝛼)
(∫

𝑡

𝑎
(𝑡 − 𝑠)𝑞(𝛼−1)𝛥𝑠)

1

𝑞
𝑃𝜙𝑃𝐿𝛥

𝑝
(𝑇,𝑅) 

 ≤
1

𝛤(𝛼)
(∫

𝑡

𝑎
(𝑡 − 𝑠)𝑞(𝛼−1)𝑑𝑠)

1

𝑞
𝑃𝜙𝑃𝐿𝛥

𝑝
(𝑇,𝑅) 

 ≤
(𝑡−𝑎)

𝛼−
1
𝑝

𝛤(𝛼)(𝑞(𝛼−1)+1)
𝑝−1
𝑝

𝑃𝜙𝑃𝐿𝛥
𝑝
(𝑇,𝑅). 

Additionally, it is necessary.  

Remark 1 Let 𝑝 ∈ 1,+∞) and 𝛼 ∈ (0,1), such that 𝛼 −
1

𝑝
> 0, by lemma 2, we can define the space 𝐼𝑇

𝛼(𝐿𝛥
𝑝
(𝑇, 𝑅)) as 

follows 

𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅)) = {𝜙: 𝑇 → 𝑅: ∃𝜓 ∈ 𝐿𝛥

𝑝
(𝑇, 𝑅):𝑎

𝑇 𝐼𝑇
𝛼𝜓(𝑡) = 𝜙(𝑡)}, 

Definition 7 Let 𝑞 ∈ 1,+∞), we say that 𝜙 is 𝐿𝛥
𝑝
-representable, if 𝜙 ∈ 𝐼𝑇

𝛼(𝐿𝛥
𝑝
(𝑇, 𝑅)), for some 1 ≤ 𝑝 ≤ 𝑞 and 𝛼 ∈

(0,1).  

Lemma 3 Let 𝑞 ∈ 1,+∞) and 𝛼 ∈ (0,1), such that 𝛼 −
1

𝑝
> 0, then  
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𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅))°𝐿𝛥

𝑝
(𝑇, 𝑅). 

Proof. Let 𝜙 ∈ 𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅)), then there is 𝜓 ∈ 𝐿𝛥

𝑝
(𝑇, 𝑅), such that 𝑎

𝑇𝐼𝑇
𝛼𝜓(𝑡) = 𝜙(𝑡),  

‖𝜙‖𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇,𝑅)) = ‖𝜓‖𝐿𝛥

𝑝
(𝑇,𝑅), 

by Lemma 2, we obtain  

‖𝜙‖𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇,𝑅)) ≤ ‖𝜙‖𝐿𝛥

𝑝
(𝑇,𝑅), 

which means  

𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅))°𝐿𝛥

𝑝
(𝑇, 𝑅). 

The subsequent lemma establishes a characterization of 𝐿𝛥
𝑝
-representability. For conciseness, we present and 

prove it in a particular case, noting that other cases can be treated analogously. 

Lemma 4 Let 𝑞 ∈ 1,+∞), 𝜙 ∈ 𝐿𝛥
𝑝
(𝑇, 𝑅), 𝛼 ∈ (0,1) and 1 ≤ 𝑝 ≤ 𝑞, we have that  

𝜙 ∈ 𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅)), 

if and only if  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙 ∈ 𝑊𝛥

1,𝑝
(𝑇, 𝑅), 

and  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙(𝑎) = 0. 

Proof. Let 𝜙 ∈ 𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅)), then there is 𝜓 ∈ 𝐿𝛥

𝑝
(𝑇, 𝑅), such that 𝑎

𝑇𝐼𝑇
𝛼𝜓(𝑡) = 𝜙(𝑡). Lemma 1 gives us  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙(𝑡) =𝑎

𝑇 𝐼𝑡
1−𝛼( 𝑎

𝑇𝐼𝑇
𝛼𝜓(𝑡)) 

= ∫
𝑡

𝑎

𝜓(𝑢)
𝛽0,1
𝑇𝑢,𝑡(1 − 𝛼, 𝛼)

𝐵(1 − 𝛼, 𝛼)
𝛥𝑢, 

Since the function  

(𝑢, 𝑡) →
𝛽0,1
𝑇𝑢,𝑡(1 − 𝛼, 𝛼)

𝐵(1 − 𝛼, 𝛼)
, 

is continuous on 𝑇 × 𝑇, then  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙 ∈ 𝑊𝛥

1,𝑝
(𝑇, 𝑅), 

and  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙(𝑎) = 0. 
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On the other hand, if  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙 ∈ 𝑊𝛥

1,𝑝
(𝑇, 𝑅), 

and  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙(𝑎) = 0, 

as  

𝑊𝛥
1,𝑝
(𝑇, 𝑅)°𝐶𝑟𝑑(𝑇, 𝑅), 

so  

∫
𝑡

𝑎

( 𝑎
𝑇𝐷𝑡

𝛼𝜙(𝑠))𝛥𝑠 = ∫
𝑡

𝑎

( 𝑎
𝑇𝐼𝑡
1−𝛼𝜙(𝑠))

𝛥
𝛥𝑠 =𝑎

𝑇 𝐼𝑡
1−𝛼𝜙(𝑡), 

as  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙 ∈ 𝑊𝛥

1,𝑝
(𝑇, 𝑅), 

then  

( 𝑎
𝑇𝐼𝑡
1−𝛼𝜙)𝛥 ∈ 𝐿𝛥

𝑝
(𝑇, 𝑅), 

consequently  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙 ∈ 𝐿𝛥

𝑝
(𝑇, 𝑅), 

what is means  

𝑎
𝑇𝐼𝑇
𝛼( 𝑎

𝑇𝐼𝑡
1−𝛼𝜙) ∈ 𝐼𝑇

𝛼(𝐿𝛥
𝑝
(𝑇, 𝑅)), 

by Lemma 1, we have  

( 𝑎
𝑇𝐼𝑡
1−𝛼 ∘𝑎

𝑇 𝐼𝑡
𝛼)|𝜙| ≥𝑎

𝑇 𝐼𝑡
1|𝜙|, 

therefore  

𝑎
𝑇𝐼𝑡
1|𝜙| ∈ 𝐼𝑇

𝛼(𝐿𝛥
𝑝
(𝑇, 𝑅)). 

From this, we conclude that  

𝜙 ∈ 𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅)). 

We are now in a position to introduce the left Riemann–Liouville fractional Sobolev spaces on time scales, which 

will be formally defined below. 

Definition 8 (Riemann-Liouville Fractional Sobolev Spaces) Let 𝑝 ∈ 1,∞] and 𝛼 ∈ (0,1). The left Riemann-

Liouville fractional Sobolev space of order 𝛼 and summability 𝑝 is defined as  
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𝑊
𝑅𝐿,𝑎+
𝛼,𝑝

(𝑇, 𝑅) = {𝜙 ∈ 𝐿𝑝(𝑇, 𝑅):𝑎
𝑇 𝐼𝑡

1−𝛼(𝜙) ∈ 𝑊𝛥
1,𝑝
(𝑇, 𝑅)}, 

where 𝑎
𝑇𝐼𝑡
1−𝛼(𝜙) denotes the left Riemann-Liouville fractional integral of order 1 − 𝛼 of the function 𝜙 starting from 

𝑎.  

Given that the spaces 𝐿𝑝(𝑇, 𝑅) and 𝑊𝛥
1,𝑝
(𝑇, 𝑅) are white spaces, the following remark naturally follows and will be 

instrumental in the developments that follow. 

Remark 2 It is not difficult to see that the space 𝑊
𝑅𝐿,𝑎+
𝛼,𝑝

(𝑇, 𝑅), endowed with the norm  

‖𝜙‖𝑊
𝑅𝐿,𝑎+
𝛼,𝑝

(𝑇,𝑅) = ‖𝜙‖𝐿𝑝(𝑇,𝑅) + ‖ 𝑎
𝑇𝐼𝑡
1−𝛼(𝜙)‖

𝑊𝛥
1,𝑝
(𝑇,𝑅)

 . 

is a Banach space.  

Lemma 5 Let 𝛼 ∈ (0,1) and 𝑝 ∈ [1,∞). Then  

𝜙 ∈ 𝐼𝑇
𝛼(𝐿𝛥

𝑝
(𝑇, 𝑅)), 

if and only if  

𝜙 ∈ 𝑊
𝑅𝐿,𝑎+
𝛼,𝑝

(𝑇, 𝑅), 

and  

𝑎
𝑇𝐼𝑡
1−𝛼𝜙(𝑎) = 0. 

Proof. In the light of Definition 7, we may restate Lemma 4 in an equivalent form that aligns more naturally with 

the structure under consideration.  

3. Conclusion 

In this paper, we introduced and analyzed a new class of fractional Sobolev spaces on time scales, associated 

with the left Riemann–Liouville fractional integral. We established fundamental properties of the space 𝑊
𝑅𝐿,𝑎+
𝛼,𝑝

(𝑇, 𝑅), 

including its topological structure and its relationship to classical function spaces on time scales. This space provides 

a natural framework for the study of fractional dynamic equations involving nonlocal operators. 

Moreover, the results obtained here can be readily extended to the right Riemann–Liouville case, as the 

underlying techniques remain valid with minor modifications. The importance of such functional spaces lies in their 

applicability to the well-posedness and analysis of fractional differential equations on time scales. 

Finally, the methods and constructions presented in this work may also be generalized to the nabla-type 

fractional setting, which opens new directions for future research in fractional time scale calculus and its 

applications.  
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