A Coupled Majda Biello Type System with Damping

Authors

  • Aissa Boukarou Aissa Boukarou: University of Science and Technology Houari Boumediene, Algiers, Algeria Author https://orcid.org/0000-0002-8586-1058
  • Mohamad Biomy Department of Management Information Systems, College of Business Administration, Qassim University, Buraydah 52571, Saudi Arabia Author

Keywords:

Damping, Well-posedness, Conservation law, Majda Biello system, Korteweg-de Vries equation

Abstract

  In this paper, we study a Majda–Biello-Type system with weak damping terms and $(u_0, v_0)\in \mathcal{L}^{\sigma} (\mathbb{R})\times \mathcal{L}^{\sigma} (\mathbb{R}) $. \begin{equation*} \left\{\begin{array}{l} u_t+u_{x x x}+\beta_1uu_x+\beta_2 u v_x+\beta_3u_x v+\beta_4vv_x=0, \\ v_t+\alpha v_{x x x}+\beta_5 uu_x+\beta_6u v_x+\beta_7 u_xv+\beta_8vv_x=0. \end{array}\right. \end{equation*} The system involves two functions, $\mathfrak{d}_1(x)$ and  $\mathfrak{d}_2(x)$, which serve as damping coefficients. We first establish local well-posedness by applying the fixed point theorem in Fourier restriction spaces $\mathcal{Y}_{\sigma,\kappa}(\mathbb{R}^{2})\times\mathcal{Y}^{\alpha}_{\sigma,\kappa}(\mathbb{R}^{2})$. Subsequently, using an approximate conservation law, we extend the local well-posedness result to a global one, demonstrating that the radius of analyticity of the solutions remains uniformly bounded below by a fixed positive constant for all time.

References

[1] Atmani A, Boukarou A, Benterki D, Zennir K. Spatial analyticity of solutions for a coupled system of generalized KdV equations. Math Meth Appl Sci. 2024;47(12):10351–72. doi:10.48550/arXiv.2201.12864

[2] Boukarou A, Zennir K, Bouye M, Moumen A. Nondecreasing analytic radius for the Kawahara–Korteweg–de Vries equation. AIMS Math. 2024;9(8):22414–34. doi:10.3934/math.20241090

[3] Boukarou A, Zennir K, Guerbati K, Georgiev SG. Well posedness and regularity of the fifth order Kadomtsev–Petviashvili I equation in the analytic Bourgain spaces. Ann Univ Ferrara Sez VII Sci Mat. 2020;66:255–72. doi:10.1007/s11565-020-00340-8

[4] Dufera T, Mebrate S, Tesfahun A. On the persistence of spatial analyticity for the beam equation. J Math Anal Appl. 2022;509(2):126001. doi:10.1016/j.jmaa.2022.126001

[5] Faminskii AV, Nikolayev A. On stationary solutions of KdV and mKdV equations. Differential and Difference Equations with Applications. 2016;164:63–70.

[6] Otmani S, Boukarou A, Zennir K, Bouhali K, Moumen A, Bouye M. On the study of the radius of analyticity for Korteweg–de Vries type systems with weak damping. AIMS Math. 2024;9(10):28341–60. doi:10.3934/math.20241375

[7] Petronilho G, da Silva PL. On the radius of spatial analyticity for the modified Kawahara equation on the line. Math Nachr. 2019;292(9):2032–47. doi:10.1002/mana.201800394

[8] Selberg S, Silva DO. Lower bounds on the radius of spatial analyticity for the KdV equation. Ann Henri Poincaré. 2016;18:1009–23. doi:10.1007/s00023-016-0498-1

[9] Oh T. Diophantine conditions in well posedness theory of coupled KdV type systems: local theory. Int Math Res Not. 2009;18:3516–56. doi:10.1093/imrn/rnn083

[10] Elmansouri A, Zennir K, Boukarou A, Zehrour O. Analytic Gevrey well posedness and regularity for class of coupled periodic KdV systems of Majda Biello type. Appl Sci. 2022;24:117–30.

[11] Wang M. Nondecreasing analytic radius for the KdV equation with weak damping. Nonlinear Anal. 2022;215:112653. doi:10.1016/j.na.2022.112653

Downloads

Published

12-07-2025

Issue

Section

Articles